Rigidity for equivariant K-theory

被引:5
|
作者
Yagunov, Serge [1 ,2 ]
Ostvaer, Paul Arne [3 ]
机构
[1] VA Steklov Math Inst, St Petersburg 191011, Russia
[2] Univ Bielefeld, Fak Math, D-4800 Bielefeld, Germany
[3] Univ Oslo, Dept Math, Oslo, Norway
关键词
LOCAL-RINGS;
D O I
10.1016/j.crma.2009.10.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the classical rigidity results for K-theory to the equivariant setting of linear algebraic group actions. These results concern rigidity for rational points, field extensions, and Hensel local rings. To cite this article: S. Yagunov, P.A. Ostvaer, C R. Acad. Sci. Paris, Ser. I 347 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1403 / 1407
页数:5
相关论文
共 50 条
  • [1] Rigidity in equivariant algebraic K-theory
    Naumann, Niko
    Ravi, Charanya
    ANNALS OF K-THEORY, 2020, 5 (01) : 141 - 158
  • [2] Equivariant K-theory and equivariant cohomology
    Rosu, I
    Knutson, A
    MATHEMATISCHE ZEITSCHRIFT, 2003, 243 (03) : 423 - 448
  • [3] Equivariant K-theory and equivariant cohomology
    Ioanid Rosu
    Mathematische Zeitschrift, 2003, 243 : 423 - 448
  • [4] Equivariant formality in K-theory
    Fok, Chi-Kwong
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 315 - 327
  • [5] EQUIVARIANT K-THEORY OF GRASSMANNIANS
    Pechenik, Oliver
    Yong, Alexander
    FORUM OF MATHEMATICS PI, 2017, 5
  • [6] LOWER EQUIVARIANT K-THEORY
    SVENSSON, JA
    MATHEMATICA SCANDINAVICA, 1987, 60 (02) : 179 - 201
  • [7] Equivariant representable K-theory
    Emerson, Heath
    Meyer, Ralf
    JOURNAL OF TOPOLOGY, 2009, 2 (01) : 123 - 156
  • [8] THE SPECTRUM OF EQUIVARIANT K-THEORY
    BOJANOWSKA, A
    MATHEMATISCHE ZEITSCHRIFT, 1983, 183 (01) : 1 - 19
  • [9] EQUIVARIANT K-THEORY FOR CURVES
    ELLINGSRUD, G
    LONSTED, K
    DUKE MATHEMATICAL JOURNAL, 1984, 51 (01) : 37 - 46
  • [10] EQUIVARIANT K-THEORY OF RINGS
    DAVYDOV, AA
    RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (04) : 167 - 168