Self-Aligned Photonic Defect Microcavity Lasers with Site-Controlled Quantum Dots

被引:3
|
作者
Shih, Ching-Wen [1 ]
Limame, Imad [1 ]
Palekar, Chirag C. [1 ]
Koulas-Simos, Aris [1 ]
Kaganskiy, Arsenty [1 ]
Klenovsky, Petr [2 ,3 ]
Reitzenstein, Stephan [1 ]
机构
[1] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany
[2] Masaryk Univ, Fac Sci, Dept Condensed Matter Phys, Kotlarska 267-2, Brno 61137, Czech Republic
[3] Czech Metrol Inst, Okruzni 31, Brno 63800, Czech Republic
基金
欧洲研究理事会;
关键词
buried-stressor method; microlasers; nanolasers; photonic microcavities; scalable quantum light sources; site-controlled quantum dots; vertical-cavity surface-emitting lasers; REFRACTIVE-INDEX; GAAS; BRIGHT;
D O I
10.1002/lpor.202301242
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Self-assembled semiconductor quantum dots face challenges in terms of scalable device integration because of their random growth positions, originating from the Stranski-Krastanov growth mode. Even with existing site-controlled growth techniques, for example, nanohole or buried stressor concepts, a further lithography and etching step with high spatial alignment requirements is necessary to accurately integrate quantum dots into the nanophotonic devices. Here, the fabrication and characterization of strain-induced site-controlled microcavities are reported, where site-controlled quantum dots are positioned at the antinode of the optical mode field in a self-aligned manner without the need of any further nano-processing. It is shown that the cavity properties such as Q-factor, mode volume, and mode splitting can be tailored by the geometry of the integrated buried stressor, with an opening <4 mu m. The experimental results are complemented with theory calculations based on continuum elasticity. Lasing signatures, including super-linear input-output response and linewidth narrowing, are observed for a 3.6-mu m self-aligned cavity with a Q-factor of 18 000. Furthermore, the quasi-planar site-controlled cavities exhibit no detrimental thermal effects. This approach integrates seamlessly with the industrial-matured manufacturing process and the buried-stressor technique, paving the way for exceptional scalability and straightforward manufacturing of high-beta microlasers and bright quantum light sources.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Charging dynamics of a floating gate transistor with site-controlled quantum dots
    Maier, P.
    Hartmann, F.
    Emmerling, M.
    Schneider, C.
    Hoefling, S.
    Kamp, M.
    Worschech, L.
    APPLIED PHYSICS LETTERS, 2014, 105 (05)
  • [42] Site-controlled InAs/GaAs quantum dots emitting at telecommunication wavelength
    Maier, S.
    Berschneider, K.
    Steinl, T.
    Forchel, A.
    Hoefling, S.
    Schneider, C.
    Kamp, M.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2014, 29 (05)
  • [43] Electrical switching of photoluminescence of single site-controlled InAs quantum dots
    Schramm, A.
    Koski, E.
    Kontio, J. M.
    Tommila, J.
    Hakkarainen, T. V.
    Lupo, D.
    Guina, M.
    ELECTRONICS LETTERS, 2016, 52 (14) : 1240 - 1241
  • [44] Linewidth reduction of site-controlled InGaN quantum dots by surface passivation
    Teng, Chu-Hsiang
    Zhang, Lei
    Deng, Hui
    Ku, Pei-Cheng
    GALLIUM NITRIDE MATERIALS AND DEVICES VIII, 2013, 8625
  • [45] Single electron transport through site-controlled InAs quantum dots
    Cha, K. M.
    Shibata, K.
    Hirakawa, K.
    APPLIED PHYSICS LETTERS, 2012, 101 (22)
  • [46] Probing the Excitonic States of Site-Controlled GaN Nanowire Quantum Dots
    Holmes, Mark J.
    Kako, Satoshi
    Choi, Kihyun
    Podemski, Pawel
    Arita, Munetaka
    Arakawa, Yasuhiko
    NANO LETTERS, 2015, 15 (02) : 1047 - 1051
  • [47] Broadband enhancement of light-matter interaction in photonic crystal cavities integrating site-controlled quantum dots
    Felici, Marco
    Pettinari, Giorgio
    Biccari, Francesco
    Boschetti, Alice
    Younis, Saeed
    Birindelli, Simone
    Gurioli, Massimo
    Vinattieri, Anna
    Gerardino, Annamaria
    Businaro, Luca
    Hopkinson, Mark
    Rubini, Silvia
    Capizzi, Mario
    Polimeni, Antonio
    PHYSICAL REVIEW B, 2020, 101 (20)
  • [48] Scalable fabrication of optical resonators with embedded site-controlled quantum dots
    Suenner, Thomas
    Schneider, Christian
    Strauss, Micha
    Huggenberger, Alexander
    Wiener, Daniel
    Hoefling, Sven
    Kamp, Martin
    Forchel, Alfred
    OPTICS LETTERS, 2008, 33 (15) : 1759 - 1761
  • [49] Site-controlled InAs quantum dots regrown on nonlithographically patterned GaAs
    Meneou, K
    Cheng, KY
    Zhang, ZH
    Tsai, CL
    Xu, CF
    Hsieh, KC
    APPLIED PHYSICS LETTERS, 2005, 86 (15) : 1 - 3
  • [50] Ultrafast coherent manipulation of trions in site-controlled nanowire quantum dots
    Lagoudakis, K. G.
    McMahon, P. L.
    Dory, C.
    Fischer, K. A.
    Mueller, K.
    Borish, V.
    Dalacu, D.
    Poole, P. J.
    Reimer, M. E.
    Zwiller, V.
    Yamamoto, Y.
    Vuckovic, J.
    OPTICA, 2016, 3 (12): : 1430 - 1435