Self-Aligned Photonic Defect Microcavity Lasers with Site-Controlled Quantum Dots

被引:3
|
作者
Shih, Ching-Wen [1 ]
Limame, Imad [1 ]
Palekar, Chirag C. [1 ]
Koulas-Simos, Aris [1 ]
Kaganskiy, Arsenty [1 ]
Klenovsky, Petr [2 ,3 ]
Reitzenstein, Stephan [1 ]
机构
[1] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany
[2] Masaryk Univ, Fac Sci, Dept Condensed Matter Phys, Kotlarska 267-2, Brno 61137, Czech Republic
[3] Czech Metrol Inst, Okruzni 31, Brno 63800, Czech Republic
基金
欧洲研究理事会;
关键词
buried-stressor method; microlasers; nanolasers; photonic microcavities; scalable quantum light sources; site-controlled quantum dots; vertical-cavity surface-emitting lasers; REFRACTIVE-INDEX; GAAS; BRIGHT;
D O I
10.1002/lpor.202301242
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Self-assembled semiconductor quantum dots face challenges in terms of scalable device integration because of their random growth positions, originating from the Stranski-Krastanov growth mode. Even with existing site-controlled growth techniques, for example, nanohole or buried stressor concepts, a further lithography and etching step with high spatial alignment requirements is necessary to accurately integrate quantum dots into the nanophotonic devices. Here, the fabrication and characterization of strain-induced site-controlled microcavities are reported, where site-controlled quantum dots are positioned at the antinode of the optical mode field in a self-aligned manner without the need of any further nano-processing. It is shown that the cavity properties such as Q-factor, mode volume, and mode splitting can be tailored by the geometry of the integrated buried stressor, with an opening <4 mu m. The experimental results are complemented with theory calculations based on continuum elasticity. Lasing signatures, including super-linear input-output response and linewidth narrowing, are observed for a 3.6-mu m self-aligned cavity with a Q-factor of 18 000. Furthermore, the quasi-planar site-controlled cavities exhibit no detrimental thermal effects. This approach integrates seamlessly with the industrial-matured manufacturing process and the buried-stressor technique, paving the way for exceptional scalability and straightforward manufacturing of high-beta microlasers and bright quantum light sources.
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Site-controlled quantum dots grown in inverted pyramids for photonic crystal applications
    Pelucchi, E
    Watanabe, S
    Leifer, K
    Dwir, B
    Kapon, E
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 23 (3-4): : 476 - 481
  • [12] Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities
    Gallo, P.
    Felici, M.
    Dwir, B.
    Atlasov, K. A.
    Karlsson, K. F.
    Rudra, A.
    Mohan, A.
    Biasiol, G.
    Sorba, L.
    Kapon, E.
    APPLIED PHYSICS LETTERS, 2008, 92 (26)
  • [13] Integration of Site-Controlled Pyramidal Quantum Dots and Photonic Crystal Membrane Cavities
    Gallo, P.
    Felici, M.
    Dwir, B.
    Atlasov, K.
    Karlsson, K. F.
    Rudra, A.
    Mohan, A.
    Biasiol, G.
    Sorba, L.
    Kapon, E.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 1720 - +
  • [14] Micropillars with a controlled number of site-controlled quantum dots
    Kaganskiy, Arsenty
    Gericke, Fabian
    Heuser, Tobias
    Heindel, Tobias
    Porte, Xavier
    Reitzenstein, Stephan
    APPLIED PHYSICS LETTERS, 2018, 112 (07)
  • [15] Photonic-crystal microcavity laser with site-controlled quantum-wire active medium
    Atlasov, Kirill A.
    Calic, Milan
    Karlsson, Karl Fredrik
    Gallo, Pascal
    Rudra, Alok
    Dwir, Benjamin
    Kapon, Eli
    OPTICS EXPRESS, 2009, 17 (20): : 18178 - 18183
  • [16] Site-controlled InAs Quantum Dots for Plasmonics
    Hakkarainen, T. V.
    Tommila, J.
    Schramm, A.
    Simonen, J.
    Niemi, T.
    Kontio, J.
    Guina, M.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [17] Effects of lateral quantum dot pitch on the formation of vertically aligned InAs site-controlled quantum dots
    Yang, T
    Kohmoto, S
    Nakamura, H
    Asakawa, K
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) : 1190 - 1194
  • [18] Ordered systems of site-controlled pyramidal quantum dots incorporated in photonic crystal cavities
    Surrente, A.
    Felici, M.
    Gallo, P.
    Dwir, B.
    Rudra, A.
    Biasiol, G.
    Sorba, L.
    Kapon, E.
    NANOTECHNOLOGY, 2011, 22 (46)
  • [19] Nitrogen Incorporation Effects On Site-Controlled Quantum Dots
    Juska, G.
    Dimastrodonato, V.
    Mereni, L. O.
    Pelucchi, E.
    PHYSICS OF SEMICONDUCTORS: 30TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, 2011, 1399
  • [20] High optical quality site-controlled quantum dots
    Pfau, T. J.
    Gushterov, A.
    Reithmaier, J. P.
    Cestier, I.
    Eisenstein, G.
    MICROELECTRONIC ENGINEERING, 2010, 87 (5-8) : 1357 - 1359