Parallel homological calculus for 3D binary digital images

被引:0
|
作者
Diaz-del-Rio, Fernando [1 ]
Molina-Abril, Helena [2 ]
Real, Pedro [1 ]
Onchis, Darian [3 ]
Blanco-Trejo, Sergio [4 ]
机构
[1] Univ Seville, Inst Informat Engn I3US, Avda Reina Mercedes S-N, Seville 14012, Spain
[2] Univ Seville, Inst Math IMUS, Avda Reina Mercedes S-N, Seville 14012, Spain
[3] West Univ Timisoara, Fac Math & Informat, St Vasile Parvan 4, Timisoara 300223, Romania
[4] Univ Seville, Escuela Tecn Super Ingn, Avda Descubrimientos S-N, Seville 41092, Spain
关键词
3D digital images; Binary images; Parallel computing; Cavity; Tunnel; Connected component; Homological spanning forest; Inter-voxel; Homological region adjacency tree; COHOMOLOGY; ADJACENCY; BOUNDARY; TOPOLOGY; GRAPH;
D O I
10.1007/s10472-023-09913-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Topological representations of binary digital images usually take into consideration different adjacency types between colors. Within the cubical-voxel 3D binary image context, we design an algorithm for computing the isotopic model of an image, called (6, 26)-Homological Region Adjacency Tree ((6, 26)-Hom-Tree). This algorithm is based on a flexible graph scaffolding at the inter-voxel level called Homological Spanning Forest model (HSF). Hom-Trees are edge-weighted trees in which each node is a maximally connected set of constant-value voxels, which is interpreted as a subtree of the HSF. This representation integrates and relates the homological information (connected components, tunnels and cavities) of the maximally connected regions of constant color using 6-adjacency and 26-adjacency for black and white voxels, respectively (the criteria most commonly used for 3D images). The Euler-Poincare numbers (which may as well be computed by counting the number of cells of each dimension on a cubical complex) and the connected component labeling of the foreground and background of a given image can also be straightforwardly computed from its Hom-Trees. Being ID\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_D$$\end{document} a 3D binary well-composed image (where D is the set of black voxels), an almost fully parallel algorithm for constructing the Hom-Tree via HSF computation is implemented and tested here. If ID\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_D$$\end{document} has m1xm2xm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1{\times } m_2{\times } m_3$$\end{document} voxels, the time complexity order of the reproducible algorithm is near O(log(m1+m2+m3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log (m_1{+}m_2{+}m_3))$$\end{document}, under the assumption that a processing element is available for each cubical voxel. Strategies for using the compressed information of the Hom-Tree representation to distinguish two topologically different images having the same homological information (Betti numbers) are discussed here. The topological discriminatory power of the Hom-Tree and the low time complexity order of the proposed implementation guarantee its usability within machine learning methods for the classification and comparison of natural 3D images.
引用
收藏
页码:77 / 113
页数:37
相关论文
共 50 条
  • [41] VIEWING 3D IMAGES IN 3D
    MAHONEY, DP
    COMPUTER GRAPHICS WORLD, 1995, 18 (03) : 19 - 20
  • [42] 3D representation and CNC machining of 2D digital images
    Sood, Sumit
    Duvedi, Ravinder Kumar
    Bedi, Sanjeev
    Mann, Stephen
    46TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE, NAMRC 46, 2018, 26 : 10 - 20
  • [43] 3D Medical Images Registration Based on GPU Parallel Computing
    Meng Lu
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS, PTS 1-4, 2013, 241-244 : 3010 - 3013
  • [44] Enhanced Parallel Generation of Tree Structures for the Recognition of 3D Images
    Real, P.
    Molina-Abril, H.
    Diaz-del-Rio, F.
    Blanco-Trejo, S.
    Onchis, D.
    PATTERN RECOGNITION, MCPR 2019, 2019, 11524 : 292 - 301
  • [45] Connectivity preserving digitization of blurred binary images in 2D and 3D
    Stelldinger, P
    Köthe, U
    COMPUTERS & GRAPHICS-UK, 2006, 30 (01): : 70 - 76
  • [46] MOVEMENT ANALYSIS OF DIGITAL 3D IMAGES DERIVED FROM SERIAL SECTION IMAGES
    TASCINI, G
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1984, 515 : 351 - 355
  • [47] Graph-Based Semantic Segmentation for 3D Digital Images
    Burdescu, Dumitru Dan
    Brezovan, Marius
    Stanescu, Liana
    Spahiu, Cosmin Stoica
    Ebanca, Daniel Costin
    2017 31ST IEEE INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (IEEE WAINA 2017), 2017, : 114 - 119
  • [48] Digital slicing of 3D scenes by Fourier filtering of integral images
    Saavedra, G.
    Martinez-Cuenca, R.
    Martinez-Corral, M.
    Navarro, H.
    Daneshpanah, M.
    Javidi, B.
    OPTICS EXPRESS, 2008, 16 (22) : 17154 - 17160
  • [49] Invisible Digital Color Watermarking Technique In Anaglyph 3D Images
    Octavio Munoz-Ramirez, David
    Reyes-Reyes, Rogelio
    Ponomaryov, Volodymyr
    Cruz-Ramos, Clara
    2015 12TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, COMPUTING SCIENCE AND AUTOMATIC CONTROL (CCE 2015), 2015,
  • [50] Towards 3D map generation from digital aerial images
    Zebedin, Lukas
    Klaus, Andreas
    Gruber-Geymayer, Barbara
    Karner, Konrad
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2006, 60 (06) : 413 - 427