Parallel homological calculus for 3D binary digital images

被引:0
|
作者
Diaz-del-Rio, Fernando [1 ]
Molina-Abril, Helena [2 ]
Real, Pedro [1 ]
Onchis, Darian [3 ]
Blanco-Trejo, Sergio [4 ]
机构
[1] Univ Seville, Inst Informat Engn I3US, Avda Reina Mercedes S-N, Seville 14012, Spain
[2] Univ Seville, Inst Math IMUS, Avda Reina Mercedes S-N, Seville 14012, Spain
[3] West Univ Timisoara, Fac Math & Informat, St Vasile Parvan 4, Timisoara 300223, Romania
[4] Univ Seville, Escuela Tecn Super Ingn, Avda Descubrimientos S-N, Seville 41092, Spain
关键词
3D digital images; Binary images; Parallel computing; Cavity; Tunnel; Connected component; Homological spanning forest; Inter-voxel; Homological region adjacency tree; COHOMOLOGY; ADJACENCY; BOUNDARY; TOPOLOGY; GRAPH;
D O I
10.1007/s10472-023-09913-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Topological representations of binary digital images usually take into consideration different adjacency types between colors. Within the cubical-voxel 3D binary image context, we design an algorithm for computing the isotopic model of an image, called (6, 26)-Homological Region Adjacency Tree ((6, 26)-Hom-Tree). This algorithm is based on a flexible graph scaffolding at the inter-voxel level called Homological Spanning Forest model (HSF). Hom-Trees are edge-weighted trees in which each node is a maximally connected set of constant-value voxels, which is interpreted as a subtree of the HSF. This representation integrates and relates the homological information (connected components, tunnels and cavities) of the maximally connected regions of constant color using 6-adjacency and 26-adjacency for black and white voxels, respectively (the criteria most commonly used for 3D images). The Euler-Poincare numbers (which may as well be computed by counting the number of cells of each dimension on a cubical complex) and the connected component labeling of the foreground and background of a given image can also be straightforwardly computed from its Hom-Trees. Being ID\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_D$$\end{document} a 3D binary well-composed image (where D is the set of black voxels), an almost fully parallel algorithm for constructing the Hom-Tree via HSF computation is implemented and tested here. If ID\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_D$$\end{document} has m1xm2xm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1{\times } m_2{\times } m_3$$\end{document} voxels, the time complexity order of the reproducible algorithm is near O(log(m1+m2+m3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log (m_1{+}m_2{+}m_3))$$\end{document}, under the assumption that a processing element is available for each cubical voxel. Strategies for using the compressed information of the Hom-Tree representation to distinguish two topologically different images having the same homological information (Betti numbers) are discussed here. The topological discriminatory power of the Hom-Tree and the low time complexity order of the proposed implementation guarantee its usability within machine learning methods for the classification and comparison of natural 3D images.
引用
收藏
页码:77 / 113
页数:37
相关论文
共 50 条
  • [31] HOLES AND GENUS OF 2D AND 3D DIGITAL IMAGES
    LEE, CN
    POSTON, T
    ROSENFELD, A
    CVGIP-GRAPHICAL MODELS AND IMAGE PROCESSING, 1993, 55 (01): : 20 - 47
  • [32] 3D digital topology under binary transformation with applications
    Saha, PK
    Chaudhuri, BB
    COMPUTER VISION AND IMAGE UNDERSTANDING, 1996, 63 (03) : 418 - 429
  • [33] Denoising 3D Biomedical Images with Fractional-Order Integral Calculus
    Ma, Yu
    Zhang, Yanning
    PROCEEDINGS OF 2012 INTERNATIONAL CONFERENCE ON IMAGE ANALYSIS AND SIGNAL PROCESSING, 2012, : 64 - 67
  • [34] 3D Lesion Insertion in Digital Breast Tomosynthesis Images
    Vaz, Michael S.
    Besnehard, Quentin
    Marchessoux, Cedric
    MEDICAL IMAGING 2011: PHYSICS OF MEDICAL IMAGING, 2011, 7961
  • [35] Cup Products on Polyhedral Approximations of 3D Digital Images
    Gonzalez-Diaz, Rocio
    Lamar, Javier
    Umble, Ronald
    COMBINATORIAL IMAGE ANALYSIS, 2011, 6636 : 107 - 119
  • [36] Analysis of branching tubular structures in 3D digital images
    Kiraly, AP
    Higgins, WE
    2002 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2002, : 333 - 336
  • [37] Copyright Protection of 3D Images Using Digital Watermarking
    Salman, Yazan
    Al-Haj, Ali
    2021 7TH INTERNATIONAL CONFERENCE ON INFORMATION MANAGEMENT (ICIM 2021), 2021, : 82 - 86
  • [38] Direct writing of digital images onto 3D surfaces
    Sung, Raymond C. W.
    Corney, Jonathan R.
    Towers, David P.
    Black, Ian
    Hand, Duncan P.
    Clark, Doug E. R.
    Gross, Markus S.
    DETC 2005: ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2005, VOL 4, 2005, : 365 - 374
  • [39] A Method for 3D Soil Horizonation Using Digital Images
    D. A. Zhulidova
    Z. S. Artem’eva
    D. M. Homiakov
    Moscow University Soil Science Bulletin, 2024, 79 (1) : 1 - 12
  • [40] Direct writing of digital images onto 3D surfaces
    Sung, RCW
    Corney, JR
    Towers, DP
    Black, I
    Hand, DP
    McPherson, F
    Clark, DER
    Gross, MS
    INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 2006, 33 (01) : 27 - 36