Parallel homological calculus for 3D binary digital images

被引:0
|
作者
Diaz-del-Rio, Fernando [1 ]
Molina-Abril, Helena [2 ]
Real, Pedro [1 ]
Onchis, Darian [3 ]
Blanco-Trejo, Sergio [4 ]
机构
[1] Univ Seville, Inst Informat Engn I3US, Avda Reina Mercedes S-N, Seville 14012, Spain
[2] Univ Seville, Inst Math IMUS, Avda Reina Mercedes S-N, Seville 14012, Spain
[3] West Univ Timisoara, Fac Math & Informat, St Vasile Parvan 4, Timisoara 300223, Romania
[4] Univ Seville, Escuela Tecn Super Ingn, Avda Descubrimientos S-N, Seville 41092, Spain
关键词
3D digital images; Binary images; Parallel computing; Cavity; Tunnel; Connected component; Homological spanning forest; Inter-voxel; Homological region adjacency tree; COHOMOLOGY; ADJACENCY; BOUNDARY; TOPOLOGY; GRAPH;
D O I
10.1007/s10472-023-09913-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Topological representations of binary digital images usually take into consideration different adjacency types between colors. Within the cubical-voxel 3D binary image context, we design an algorithm for computing the isotopic model of an image, called (6, 26)-Homological Region Adjacency Tree ((6, 26)-Hom-Tree). This algorithm is based on a flexible graph scaffolding at the inter-voxel level called Homological Spanning Forest model (HSF). Hom-Trees are edge-weighted trees in which each node is a maximally connected set of constant-value voxels, which is interpreted as a subtree of the HSF. This representation integrates and relates the homological information (connected components, tunnels and cavities) of the maximally connected regions of constant color using 6-adjacency and 26-adjacency for black and white voxels, respectively (the criteria most commonly used for 3D images). The Euler-Poincare numbers (which may as well be computed by counting the number of cells of each dimension on a cubical complex) and the connected component labeling of the foreground and background of a given image can also be straightforwardly computed from its Hom-Trees. Being ID\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_D$$\end{document} a 3D binary well-composed image (where D is the set of black voxels), an almost fully parallel algorithm for constructing the Hom-Tree via HSF computation is implemented and tested here. If ID\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_D$$\end{document} has m1xm2xm3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_1{\times } m_2{\times } m_3$$\end{document} voxels, the time complexity order of the reproducible algorithm is near O(log(m1+m2+m3))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log (m_1{+}m_2{+}m_3))$$\end{document}, under the assumption that a processing element is available for each cubical voxel. Strategies for using the compressed information of the Hom-Tree representation to distinguish two topologically different images having the same homological information (Betti numbers) are discussed here. The topological discriminatory power of the Hom-Tree and the low time complexity order of the proposed implementation guarantee its usability within machine learning methods for the classification and comparison of natural 3D images.
引用
收藏
页码:77 / 113
页数:37
相关论文
共 50 条
  • [1] Parallel homological calculus for 3D binary digital images
    Fernando Díaz-del-Río
    Helena Molina-Abril
    Pedro Real
    Darian Onchis
    Sergio Blanco-Trejo
    Annals of Mathematics and Artificial Intelligence, 2024, 92 : 77 - 113
  • [2] Topology Preserving Parallel Smoothing for 3D Binary Images
    Nemeth, Gabor
    Kardos, Peter
    Palagyi, Kalman
    COMPUTATIONAL MODELING OF OBJECTS REPRESENTED IN IMAGES, PROCEEDINGS, 2010, 6026 : 287 - 298
  • [3] Homological Region Adjacency Tree for a 3D Binary Digital Image via HSF Model
    Real, Pedro
    Molina-Abril, Helena
    Diaz-del-Rio, Fernando
    Blanco-Trejo, Sergio
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2019, PT I, 2019, 11678 : 375 - 387
  • [4] Making 3D binary digital images well-composed
    Siqueira, M
    Latecki, LJ
    Gallier, J
    VISION GEOMETRY XIII, 2005, 5675 : 150 - 163
  • [5] Parallel thinning algorithms on 3D (18,6) binary images
    Ma, CM
    Wan, SY
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2000, 80 (03) : 364 - 378
  • [6] A new shape preserving parallel thinning algorithm for 3D digital images
    Saha, PK
    Chaudhuri, BB
    Dutta, D
    Majumder, DD
    PATTERN RECOGNITION, 1997, 30 (12) : 1939 - 1955
  • [7] On the cohomology of 3D digital images
    González-Díaz, R
    Real, P
    DISCRETE APPLIED MATHEMATICS, 2005, 147 (2-3) : 245 - 263
  • [8] 3D Dataset of binary images: A collection of synthetically created digital rock images of complex media
    Santos, Javier E.
    Pyrcz, Michael J.
    Prodanovi, Masa
    DATA IN BRIEF, 2022, 40
  • [9] A parallel 3D DCT architecture for the compression of integral 3D images
    Aggoun, A
    Jalloh, I
    ICECS 2001: 8TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS, VOLS I-III, CONFERENCE PROCEEDINGS, 2001, : 229 - 232
  • [10] A Digital Watermarking for Anaglyph 3D images
    Zadokar, Sanjay R.
    Raskar, Vishal B.
    Shinde, Sachin V.
    2013 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2013, : 483 - 488