共 47 条
- [41] SU(2) and SU(1,1) Approaches to Phase Operators and Temporally Stable Phase States: Applications to Mutually Unbiased Bases and Discrete Fourier Transforms SYMMETRY-BASEL, 2010, 2 (03): : 1461 - 1484
- [42] The H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2$$\end{document}-reducible matrix in four six-dimensional mutually unbiased bases Quantum Information Processing, 2019, 18 (11)
- [43] H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_2$$\end{document}-reducible matrices in six-dimensional mutually unbiased bases Quantum Information Processing, 2021, 20 (10)
- [44] A Note on Mutually Unbiased Unextendible Maximally Entangled Bases in ℂ2⊗ℂ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{2}\bigotimes \mathbb {C}^{3}$\end{document} International Journal of Theoretical Physics, 2015, 54 (1) : 326 - 333
- [45] Construction of mutually unbiased bases in Cd⊗C2ld′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^d\otimes {\mathbb {C}}^{2^{l}d'}$$\end{document} Quantum Information Processing, 2015, 14 (7) : 2635 - 2644
- [46] Construction of mutually unbiased maximally entangled bases in C2s⊗C2s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^{2^s}\otimes {\mathbb {C}}^{2^s}$$\end{document} by using Galois rings Quantum Information Processing, 2020, 19 (6)
- [47] Mutually unbiased special entangled bases with Schmidt number 2 in C3⊗C4k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^3 \otimes {\mathbb {C}}^{4k}$$\end{document} Quantum Information Processing, 2018, 17 (3)