A Note on Mutually Unbiased Unextendible Maximally Entangled Bases in ℂ2⊗ℂ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{2}\bigotimes \mathbb {C}^{3}$\end{document}

被引:6
|
作者
Halqem Nizamidin
Teng Ma
Shao-Ming Fei
机构
[1] Capital Normal University,School of Mathematical Sciences
[2] Max-Planck-Institute for Mathematics in the Sciences,undefined
关键词
Mutually unbiased bases; Unextendible maximally entangled bases; Quantum entanglement;
D O I
10.1007/s10773-014-2227-1
中图分类号
学科分类号
摘要
We systematically study the construction of mutually unbiased bases in ℂ2⊗ℂ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{2}\bigotimes \mathbb {C}^{3}$\end{document}, such that all the bases are unextendible maximally entangled ones. Necessary conditions of constructing a pair of mutually unbiased unextendible maximally entangled bases in ℂ2⊗ℂ3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}^{2}\bigotimes \mathbb {C}^{3}$\end{document} are derived. Explicit examples are presented.
引用
收藏
页码:326 / 333
页数:7
相关论文
共 50 条