INCIDENCE ANGLE NORMALIZATION OF SPACEBORNE GNSS-R SURFACE REFLECTIVITY FOR SOIL MOISTURE RETRIEVAL

被引:4
|
作者
Setti, Paulo T., Jr. [1 ]
Tabibi, Sajad [1 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Med, Luxembourg, Luxembourg
关键词
Incidence angle; GNSS-R; CYGNSS; surface reflectivity; soil moisture;
D O I
10.1109/IGARSS52108.2023.10282074
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Large-scale near-surface soil moisture can be retrieved from Global Navigation Satellite System Reflectometry (GNSS-R) surface reflectivity observations, which are dependent on the signal incidence angle and therefore need to be normalized. Using 4 years of Cyclone GNSS (CYGNSS) data, in this study we propose a new method for this normalization, accounting for the spatially varying effects of coherent and incoherent scattering. The method is based on a linear regression between the gridded incidence angle and surface reflectivity. We applied the normalized surface reflectivity observations in our soil moisture retrieval algorithm and found a median unbiased root-mean-square error (ubRMSE) of 0.0504 cm(3)cm(-3) using the Soil Moisture Active Passive (SMAP) as the reference, an improved result compared to other incidence angle correction methods described in the literature.
引用
收藏
页码:510 / 513
页数:4
相关论文
共 50 条
  • [31] Soil Moisture Retrieval Using GNSS-R Techniques: Experimental Results Over a Bare Soil Field
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Camps, Adriano
    Vall-llossera, Merce
    Valencia, Enric
    Fernando Marchan-Hernandez, Juan
    Ramos-Perez, Isaac
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (11): : 3616 - 3624
  • [32] Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture
    Chew, C. C.
    Small, E. E.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (09) : 4049 - 4057
  • [33] In-Situ GNSS-R and Radiometer Fusion Soil Moisture Retrieval Model Based on LSTM
    Zhang, Tianlong
    Yang, Lei
    Nan, Hongtao
    Yin, Cong
    Sun, Bo
    Yang, Dongkai
    Hong, Xuebao
    Lopez-Baeza, Ernesto
    REMOTE SENSING, 2023, 15 (10)
  • [34] Ground-based GNSS-R soil moisture retrieval based on correlation power correction
    Hong X.
    Zhang B.
    Ruan H.
    Han M.
    Yang D.
    Song S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (08): : 1558 - 1564
  • [35] Integrating spaceborne GNSS-R and SMOS for sea surface salinity retrieval using artificial neural network
    Li, Zheng
    Guo, Fei
    Zhang, Xiaohong
    Zhang, Zhiyu
    Zhu, Yifan
    Yang, Wentao
    Wu, Ziheng
    Yue, Liming
    GPS SOLUTIONS, 2024, 28 (04)
  • [36] Analysis of Key Issues on GNSS-R Soil Moisture Retrieval Based on Different Antenna Patterns
    Li, Fei
    Peng, Xuefeng
    Chen, Xiuwan
    Liu, Maolin
    Xu, Liwen
    SENSORS, 2018, 18 (08)
  • [37] Research Advances and Some Thoughts on Soil Moisture Retrieval by Space-Borne GNSS-R
    Zhang S.
    Guo Q.
    Ma Z.
    Liu Q.
    Hu S.
    Zhou X.
    Zhao H.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (01): : 15 - 26
  • [38] Spaceborne GNSS-R Wind Speed Retrieval Using Machine Learning Methods
    Wang, Changyang
    Yu, Kegen
    Qu, Fangyu
    Bu, Jinwei
    Han, Shuai
    Zhang, Kefei
    REMOTE SENSING, 2022, 14 (14)
  • [39] A Method of Spaceborne GNSS-R Sea Surface Wind Direction Inversion
    Gao H.
    Bai Z.-G.
    Fan D.-D.
    Bai, Zhao-Guang (13910027870@139.com), 2020, China Spaceflight Society (41): : 1473 - 1480
  • [40] POLARIMETRIC GNSS-R MEASUREMENTS FOR SOIL MOISTURE AND VEGETATION SENSING
    Jia, Yan
    Savi, Patrizia
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5260 - 5263