INCIDENCE ANGLE NORMALIZATION OF SPACEBORNE GNSS-R SURFACE REFLECTIVITY FOR SOIL MOISTURE RETRIEVAL

被引:4
|
作者
Setti, Paulo T., Jr. [1 ]
Tabibi, Sajad [1 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Med, Luxembourg, Luxembourg
关键词
Incidence angle; GNSS-R; CYGNSS; surface reflectivity; soil moisture;
D O I
10.1109/IGARSS52108.2023.10282074
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Large-scale near-surface soil moisture can be retrieved from Global Navigation Satellite System Reflectometry (GNSS-R) surface reflectivity observations, which are dependent on the signal incidence angle and therefore need to be normalized. Using 4 years of Cyclone GNSS (CYGNSS) data, in this study we propose a new method for this normalization, accounting for the spatially varying effects of coherent and incoherent scattering. The method is based on a linear regression between the gridded incidence angle and surface reflectivity. We applied the normalized surface reflectivity observations in our soil moisture retrieval algorithm and found a median unbiased root-mean-square error (ubRMSE) of 0.0504 cm(3)cm(-3) using the Soil Moisture Active Passive (SMAP) as the reference, an improved result compared to other incidence angle correction methods described in the literature.
引用
收藏
页码:510 / 513
页数:4
相关论文
共 50 条
  • [21] Spaceborne GNSS-R for Sensing Soil Moisture Using CYGNSS Considering Land Cover Type
    Song, Shengjia
    Zhu, Yongchao
    Qu, Xiaochuan
    Tao, Tingye
    WATER RESOURCES MANAGEMENT, 2025,
  • [22] Wind Direction Retrieval Using Spaceborne GNSS-R in Nonspecular Geometry
    Zhang, Guodong
    Yang, Dongkai
    Yu, Yongqing
    Wang, Feng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 649 - 658
  • [23] DEEP GENERATIVE REGRESSION MODELS FOR SOIL MOISTURE RETRIEVAL FROM GNSS-R OBSERVATIONS
    Tsagkatakis, G.
    Melebari, A.
    Akbar, R.
    Campbell, J. D.
    Hodges, E.
    Moghaddam, M.
    2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA, 2023, : 291 - 291
  • [24] HIGH RESOLUTION SOIL MOISTURE RETRIEVAL USING OPTICAL AND GNSS-R AIRBORNE DATA
    Castellvi, J.
    Camps, A.
    Corbera, J.
    Alamus, R.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 6209 - 6210
  • [25] Soil Moisture Estimation Based on GNSS-R Signal
    Yu, Pengwei
    Zhang, Lei
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND COMPUTING TECHNOLOGY, 2016, 64 : 130 - 135
  • [26] Ground based GNSS-R observations for soil moisture
    Yan Song-Hua
    Gong Jian-Ya
    Zhang Xun-Xie
    Li Dong-Xiu
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2011, 54 (11): : 2735 - 2744
  • [27] Review of GNSS-R Technology for Soil Moisture Inversion
    Yang, Changzhi
    Mao, Kebiao
    Guo, Zhonghua
    Shi, Jiancheng
    Bateni, Sayed M.
    Yuan, Zijin
    REMOTE SENSING, 2024, 16 (07)
  • [28] Soil Moisture Content Estimation Using GNSS Reflectometry (GNSS-R)
    Malik, Jabir Shabbir
    Zhang Jingrui
    Naqvi, Najam Abbas
    2017 FIFTH INTERNATIONAL CONFERENCE ON AEROSPACE SCIENCE & ENGINEERING (ICASE), 2017,
  • [29] Effective Surface Roughness Impact in Polarimetric GNSS-R Soil Moisture Retrievals
    Munoz-Martin, Joan Francesc
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Oudrhiri, Kamal
    REMOTE SENSING, 2023, 15 (08)
  • [30] An Analysis of a Commercial GNSS-R Soil Moisture Dataset
    Al-Khaldi, Mohammad M.
    Johnson, Joel T.
    Horton, Dustin
    McKague, Darren S.
    Twigg, Dorina
    Russel, Anthony
    Policelli, Frederick S.
    Ouellette, Jeffrey D.
    Bindlish, Rajat
    Park, Jeonghwan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 15480 - 15493