Waterproof and robust Al:GO for greatly-enhanced energy harvesting and reliable self-powered fluid velocity sensing

被引:6
|
作者
Wang, Ruey-Chi [1 ]
Chiang, Bo-Chen [1 ]
Lin, I-Ju [1 ]
Chen, Hsiu-Cheng [1 ]
Hung, Hao-Chun [1 ]
机构
[1] Natl Univ Kaohsiung, Dept Chem & Mat Engn, Kaohsiung 81148, Taiwan
关键词
Nanogenerator; Self-powered; Graphene oxide; Al; Sensor; TRIBOELECTRIC NANOGENERATOR; GRAPHENE-OXIDE; FILMS; HYDROGEL; DENSITY;
D O I
10.1016/j.jallcom.2023.172222
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
New applications of nanogenerators (NGs) in various environments (dry or wet) have gained increasing attention, but the mechanical strength and water resistance of active materials in nanogenerators need to be enhanced for reliable and durable performance. In this study, we propose a strategy to enhance water resistance and mechanical strength of graphene oxide (GO) membranes/films by surface treatment and cross-linking to fabricate reliable self-powered fluid sensors, and gigantically-enhanced triboelectric NGs. The bonding of Al ions dramatically improves the water resistance of GO membranes, making them suitable for immersion-type solidliquid TENGs. The water flow-induced direct-current output has an excellent linear relationship with the water flow speed (R-2 >0.99), rendering them ideal for self-powered water speed sensors. Besides, the output voltage and current of the Al:GO solid-solid TENG are increased by 18.5 and 6.7 times, respectively, by Al-containing molecular dipoles, and the durability is also greatly enhanced due to Al-induced crosslinking. This work promotes practical applications of nanogenerators for various self-powered sensing and energy harvesting in various environments.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-powered human motion detection
    Zaw, Nay Yee Win
    Yun, Jonghyeon
    Goh, Tae Sik
    Kim, Inkyum
    Kim, Youngsu
    Lee, Jung Sub
    Kim, Daewon
    ENERGY, 2022, 247
  • [42] Sustainable triboelectric nanogenerators based on recycled materials for biomechanical energy harvesting and self-powered sensing
    Wang, Yitong
    Li, Zihua
    Fu, Hong
    Xu, Bingang
    NANO ENERGY, 2023, 115
  • [43] Hybrid piezo/triboelectric nanogenerator for stray magnetic energy harvesting and self-powered sensing applications
    Yang, Aijun
    Wang, Chaoyu
    Ma, Jing
    Fan, Chengyu
    Lv, Pinlei
    Bai, Yuchen
    Rong, Yiming
    Wang, Xiaohua
    Yuan, Huan
    Rong, Mingzhe
    HIGH VOLTAGE, 2021, 6 (06) : 978 - 985
  • [44] Transparent and Efficient Wood-Based Triboelectric Nanogenerators for Energy Harvesting and Self-Powered Sensing
    Cheng, Ting
    Cao, Kunli
    Jing, Yidan
    Wang, Hongyan
    Wu, Yan
    POLYMERS, 2024, 16 (09)
  • [45] Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels
    Zhang, Jiedong
    Bai, Chenhui
    Wang, Zhaosu
    Liu, Xiao
    Li, Xiangyu
    Cui, Xiaojing
    MICROMACHINES, 2023, 14 (01)
  • [46] A Flexible Triboelectric Nanogenerator for Bio-Mechanical Energy Harvesting and Basketball Self-Powered Sensing
    Xu, Dasheng
    NANO, 2023, 18 (10)
  • [47] A Triboelectric Nanogenerator Based on Bamboo Leaf for Biomechanical Energy Harvesting and Self-Powered Touch Sensing
    Xu, Zhantang
    Chang, Yasheng
    Zhu, Zhiyuan
    ELECTRONICS, 2024, 13 (04)
  • [48] Stretchable Woven Fabric-Based Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing
    Chen, Lijun
    Wang, Tairan
    Shen, Yunchu
    Wang, Fumei
    Chen, Chaoyu
    NANOMATERIALS, 2023, 13 (05)
  • [49] Artificial Intelligence enabled self-powered sensing and wind energy harvesting system for bridges monitoring
    Hu, Junwei
    Fan, Chengliang
    Tang, Minfeng
    Chen, Hongyu
    Pan, Hongye
    Zhang, Zutao
    Yang, Ning
    NANO ENERGY, 2024, 132
  • [50] Enhanced energy harvesting performance via interfacial polarization in ternary piezoelectric composites for self-powered flexible pressure sensing application
    Cao, Chuan
    Zhou, Peng
    Wang, Jianqiao
    Chen, Daohong
    Huang, Chuanwei
    Qi, Yajun
    Zhang, Tianjin
    CERAMICS INTERNATIONAL, 2023, 49 (13) : 22377 - 22385