Waterproof and robust Al:GO for greatly-enhanced energy harvesting and reliable self-powered fluid velocity sensing

被引:6
|
作者
Wang, Ruey-Chi [1 ]
Chiang, Bo-Chen [1 ]
Lin, I-Ju [1 ]
Chen, Hsiu-Cheng [1 ]
Hung, Hao-Chun [1 ]
机构
[1] Natl Univ Kaohsiung, Dept Chem & Mat Engn, Kaohsiung 81148, Taiwan
关键词
Nanogenerator; Self-powered; Graphene oxide; Al; Sensor; TRIBOELECTRIC NANOGENERATOR; GRAPHENE-OXIDE; FILMS; HYDROGEL; DENSITY;
D O I
10.1016/j.jallcom.2023.172222
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
New applications of nanogenerators (NGs) in various environments (dry or wet) have gained increasing attention, but the mechanical strength and water resistance of active materials in nanogenerators need to be enhanced for reliable and durable performance. In this study, we propose a strategy to enhance water resistance and mechanical strength of graphene oxide (GO) membranes/films by surface treatment and cross-linking to fabricate reliable self-powered fluid sensors, and gigantically-enhanced triboelectric NGs. The bonding of Al ions dramatically improves the water resistance of GO membranes, making them suitable for immersion-type solidliquid TENGs. The water flow-induced direct-current output has an excellent linear relationship with the water flow speed (R-2 >0.99), rendering them ideal for self-powered water speed sensors. Besides, the output voltage and current of the Al:GO solid-solid TENG are increased by 18.5 and 6.7 times, respectively, by Al-containing molecular dipoles, and the durability is also greatly enhanced due to Al-induced crosslinking. This work promotes practical applications of nanogenerators for various self-powered sensing and energy harvesting in various environments.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Bio-inspired structures for energy harvesting self-powered sensing and smart monitoring
    Cui, Yingxuan
    Luo, Hongchun
    Yang, Tao
    Qin, Weiyang
    Jing, Xingjian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 228
  • [32] Silk protein-based triboelectric nanogenerators for energy harvesting and self-powered sensing
    Shang, Bo
    Wang, Chen-Yu
    Wang, Xiao-Xue
    Yu, Shou-Shan
    Wu, Zhi-Feng
    Qiao, Sheng-Lin
    Chen, Ke-Zheng
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 387
  • [33] Energy harvesting from cerebrospinal fluid pressure fluctuations for self-powered neural implants
    Beker, Levent
    Benet, Arnau
    Meybodi, Ali Tayebi
    Eovino, Ben
    Pisano, Albert P.
    Lin, Liwei
    BIOMEDICAL MICRODEVICES, 2017, 19 (02)
  • [34] Energy harvesting from cerebrospinal fluid pressure fluctuations for self-powered neural implants
    Levent Beker
    Arnau Benet
    Ali Tayebi Meybodi
    Ben Eovino
    Albert P. Pisano
    Liwei Lin
    Biomedical Microdevices, 2017, 19
  • [35] Energy harvesting from acoustic fields for self-powered sensors in pumped fluid systems
    Schwartz, Forest J.
    Skow, Ellen A.
    Erturk, Alper
    Cunefare, Kenneth A.
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2017, 2017, 10168
  • [36] Optimized design of self-powered SSHI interface circuit for enhanced vibration energy harvesting
    Zhang, Bin
    Yang, Guang
    Hu, Bingxin
    Xiong, Yeping
    Zhou, Shengxi
    SMART MATERIALS AND STRUCTURES, 2025, 34 (02)
  • [37] Bladeless-Turbine-Based Triboelectric Nanogenerator for Fluid Energy Harvesting and Self-Powered Fluid Gauge
    Chen, Jian
    Tang, Wei
    Han, Kai
    Xu, Liang
    Chen, Baodong
    Jiang, Tao
    Wang, Zhong Lin
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (03):
  • [38] A self-powered and self-sensing wave energy harvesting system for the sea-crossing bridge
    Zhou, Jianhong
    Tang, Hongjie
    Zeng, Lei
    Zhang, Zutao
    Zhao, Jie
    Li, Ang
    Kong, Lingji
    Tang, Minfeng
    Hu, Yongli
    MATERIALS TODAY NANO, 2024, 27
  • [39] Self-powered Piezoelectric Energy Harvesting Device using Velocity control Synchronized Switching Technique
    Chen, Yu-Yin
    Vasic, Dejan
    Costa, Francois
    Wu, Wen-Jong
    Lee, C. K.
    IECON 2010 - 36TH ANNUAL CONFERENCE ON IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2010,
  • [40] All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-powered human motion detection
    Win Zaw, Nay Yee
    Yun, Jonghyeon
    Goh, Tae Sik
    Kim, Inkyum
    Kim, Youngsu
    Lee, Jung Sub
    Kim, Daewon
    Energy, 2022, 247