Waterproof and robust Al:GO for greatly-enhanced energy harvesting and reliable self-powered fluid velocity sensing

被引:6
|
作者
Wang, Ruey-Chi [1 ]
Chiang, Bo-Chen [1 ]
Lin, I-Ju [1 ]
Chen, Hsiu-Cheng [1 ]
Hung, Hao-Chun [1 ]
机构
[1] Natl Univ Kaohsiung, Dept Chem & Mat Engn, Kaohsiung 81148, Taiwan
关键词
Nanogenerator; Self-powered; Graphene oxide; Al; Sensor; TRIBOELECTRIC NANOGENERATOR; GRAPHENE-OXIDE; FILMS; HYDROGEL; DENSITY;
D O I
10.1016/j.jallcom.2023.172222
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
New applications of nanogenerators (NGs) in various environments (dry or wet) have gained increasing attention, but the mechanical strength and water resistance of active materials in nanogenerators need to be enhanced for reliable and durable performance. In this study, we propose a strategy to enhance water resistance and mechanical strength of graphene oxide (GO) membranes/films by surface treatment and cross-linking to fabricate reliable self-powered fluid sensors, and gigantically-enhanced triboelectric NGs. The bonding of Al ions dramatically improves the water resistance of GO membranes, making them suitable for immersion-type solidliquid TENGs. The water flow-induced direct-current output has an excellent linear relationship with the water flow speed (R-2 >0.99), rendering them ideal for self-powered water speed sensors. Besides, the output voltage and current of the Al:GO solid-solid TENG are increased by 18.5 and 6.7 times, respectively, by Al-containing molecular dipoles, and the durability is also greatly enhanced due to Al-induced crosslinking. This work promotes practical applications of nanogenerators for various self-powered sensing and energy harvesting in various environments.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Waterproof and stretchable triboelectric nanogenerator for biomechanical energy harvesting and self-powered sensing
    Chen, Xuexian
    Miao, Liming
    Guo, Hang
    Chen, Haotian
    Song, Yu
    Su, Zongming
    Zhang, Haixia
    APPLIED PHYSICS LETTERS, 2018, 112 (20)
  • [2] Rotational energy harvesting for self-powered sensing
    Fu, Hailing
    Mei, Xutao
    Yurchenko, Daniil
    Zhou, Shengxi
    Theodossiades, Stephanos
    Nakano, Kimihiko
    Yeatman, Eric M.
    JOULE, 2021, 5 (05) : 1074 - 1118
  • [3] Environmental energy harvesting boosts self-powered sensing
    Luo, Hongchun
    Yang, Tao
    Jing, Xingjian
    Cui, Yingxuan
    Qin, Weiyang
    MATERIALS TODAY ENERGY, 2024, 40
  • [4] Ferroelectric Nanomaterials for Energy Harvesting and Self-Powered Sensing Applications
    Yu, Xiang
    Ji, Yun
    Zhang, Kewei
    Shen, Xinyi
    Zhang, Shijian
    Xu, Mofei
    Le, Xiaoyun
    ADVANCED SENSOR RESEARCH, 2024, 3 (12):
  • [5] Multifunctional Textile for Energy Harvesting and Self-Powered Sensing Applications
    Jao, Y. -T.
    Chang, T. -W.
    Lin, Z. -H.
    SOLID-STATE ELECTRONICS AND PHOTONICS IN BIOLOGY AND MEDICINE 4, 2017, 77 (07): : 47 - 50
  • [6] Enhanced variable reluctance energy harvesting for self-powered monitoring
    Zhang, Ying
    Wang, Wei
    Xie, Junxiao
    Lei, Yaguo
    Cao, Junyi
    Xu, Ye
    Bader, Sebastian
    Bowen, Chris
    Oelmann, Bengt
    APPLIED ENERGY, 2022, 321
  • [7] Enhanced Triboelectric Nanogenerator Based on a Hybrid Cellulose Aerogel for Energy Harvesting and Self-Powered Sensing
    Luo, Chen
    Ma, Hongzhi
    Yu, Hua
    Zhang, Yuhao
    Shao, Yan
    Yin, Bo
    Ke, Kai
    Zhou, Ling
    Zhang, Kai
    Yang, Ming-Bo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (25) : 9424 - 9432
  • [8] A self-powered switching circuit for piezoelectric energy harvesting with velocity control
    Chen, Y. -Y.
    Vasic, D.
    Costa, F.
    Wu, W. -J.
    Lee, C. -K.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2012, 57 (03):
  • [9] Self-powered and self-sensing devices based on piezoelectric energy harvesting
    Chen, Gantong
    Zhu, Yue
    Huang, Dongmei
    Zhou, Shengxi
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (06) : 1631 - 1667
  • [10] Self-powered and self-sensing devices based on piezoelectric energy harvesting
    CHEN GanTong
    ZHU Yue
    HUANG DongMei
    ZHOU ShengXi
    Science China(Technological Sciences), 2024, 67 (06) : 1631 - 1667