Improving ab initio diffusion calculations in materials through Gaussian process regression

被引:0
|
作者
Fattahpour, Seyyedfaridoddin [1 ]
Kadkhodaei, Sara [1 ]
机构
[1] Univ Illinois, Dept Civil Mat & Environm Engn, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
FINDING SADDLE-POINTS; ELASTIC BAND METHOD; TRANSITION-STATES;
D O I
10.1103/PhysRevMaterials.8.013804
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Saddle point search schemes are widely used to identify the transition state of different processes, like chemical reactions, surface and bulk diffusion, surface adsorption, and many more. In solid-state materials with relatively large numbers of atoms, the minimum mode following schemes such as dimer are commonly used because they alleviate the calculation of the Hessian on the high-dimensional potential energy surface. Here, we show that the dimer search can be further accelerated by leveraging Gaussian process regression (GPR). The GPR serves as a surrogate model to feed the dimer with the required energy and force input. We test the GPR-accelerated dimer method for predicting the diffusion coefficient of vacancy-mediated self-diffusion in body-centered cubic molybdenum and sulfur diffusion in hexagonal molybdenum disulfide. We use a multitask learning approach that utilizes a shared covariance function between energy and force input, and we show that the multitask learning significantly improves the performance of the GPR surrogate model compared to previously used learning approaches. Additionally, we demonstrate that a translation-hop sampling approach is necessary to avoid overfitting the GPR surrogate model to the minimum-mode-following pathway and thus succeeding in locating the saddle point. We show that our method reduces the number of evaluations compared to a conventional dimer method.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Ab initio calculations of arsenic in silicon: Diffusion mechanism and strain dependence
    Vollenweider, Kilian
    Sahli, Beat
    Fichtner, Wolfgang
    PHYSICAL REVIEW B, 2010, 81 (17)
  • [32] Ab-initio calculations of hydrogen diffusion coefficient in monoclinic zirconia
    Barbour, Orane
    Crocombette, Jean Paul
    Schuler, Thomas
    Tupin, Marc
    JOURNAL OF NUCLEAR MATERIALS, 2020, 539
  • [33] Framework for efficient ab initio electronic structure with Gaussian Process States
    Rath, Yannic
    Booth, George H.
    PHYSICAL REVIEW B, 2023, 107 (20)
  • [34] The role of ab initio electronic structure calculations in studies of the strength of materials
    Sob, M
    Friák, M
    Legut, D
    Fiala, J
    Vitek, V
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 : 148 - 157
  • [35] Graphitic nanofilms of zinc-blende materials: ab initio calculations
    Hu, San-Lue
    Zhao, Li
    Li, Yan-Li
    MATERIALS RESEARCH EXPRESS, 2017, 4 (12):
  • [36] Ab Initio Calculations of the Electronic Properties and the Transport Phenomena in Graphene Materials
    Asadov, M. M.
    Mustafaeva, S. N.
    Guseinova, S. S.
    Lukichev, V. F.
    PHYSICS OF THE SOLID STATE, 2020, 62 (11) : 2224 - 2231
  • [37] Electronic properties of hydrogen storage materials from ab initio calculations
    Gupta, M
    ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 2005, 30 (05): : 455 - 469
  • [38] EELS studies of Ti-bearing materials and ab initio calculations
    Kihn, Y
    Mirguet, C
    Calmels, L
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2005, 143 (2-3) : 117 - 127
  • [39] Ab Initio Calculations of the Electronic Properties and the Transport Phenomena in Graphene Materials
    M. M. Asadov
    S. N. Mustafaeva
    S. S. Guseinova
    V. F. Lukichev
    Physics of the Solid State, 2020, 62 : 2224 - 2231
  • [40] TRIQS/DFTTools: A TRIQS application for ab initio calculations of correlated materials
    Aichhorn, Markus
    Pourovskii, Leonid
    Seth, Priyanka
    Vildosola, Veronica
    Zingl, Manuel
    Peil, Oleg E.
    Deng, Xiaoyu
    Mravlje, Jernej
    Kraberger, Gernot J.
    Martins, Cyril
    Ferrero, Michel
    Parcollet, Olivier
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 204 : 200 - 208