Poisson quasi-Nijenhuis deformations of the canonical PN structure

被引:1
|
作者
Falqui, G. [1 ,4 ,5 ]
Mencattini, I. [2 ]
Pedroni, M. [3 ,5 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Bicocca, Italy
[2] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, Sao Paulo, Brazil
[3] Univ Bergamo, Dipartimento Ingegnena Gestionale, Informaz & Prod, Bergamo, Italy
[4] via Bonomea 265, I-34136 Sissa, Italy
[5] Sez Milano Bicocca, INFN, Piazza Sci 3, I-20126 Milan, Italy
基金
欧盟地平线“2020”;
关键词
Poisson quasi-Nijenhuis manifolds; Integrable systems; Toda lattices; HAMILTONIAN-STRUCTURE; TODA SYSTEMS;
D O I
10.1016/j.geomphys.2023.104773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a result which allows us to deform a Poisson-Nijenhuis manifold into a Poisson quasi-Nijenhuis manifold by means of a closed 2-form. Under an additional assumption, the deformed structure is also Poisson-Nijenhuis. We apply this result to show that the canonical Poisson-Nijenhuis structure on R2n gives rise to both the Poisson-Nijenhuis structure of the open (or non periodic) n-particle Toda lattice, introduced by Das and Okubo [7], and the Poisson quasi-Nijenhuis structure of the closed (or periodic) n-particle Toda lattice, described in our recent work [8].(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 34 条
  • [1] Poisson Quasi-Nijenhuis Manifolds
    Mathieu Stiénon
    Ping Xu
    Communications in Mathematical Physics, 2007, 270 : 709 - 725
  • [2] Poisson quasi-Nijenhuis manifolds
    Stienon, Mathieu
    Xu, Ping
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) : 709 - 725
  • [3] Poisson Quasi-Nijenhuis Structures with Background
    Paulo Antunes
    Letters in Mathematical Physics, 2008, 86 : 33 - 45
  • [4] Poisson Quasi-Nijenhuis Structures with Background
    Antunes, Paulo
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 86 (01) : 33 - 45
  • [5] Quasi-Lie Bialgebroids, Dirac Structures, and Deformations of Poisson Quasi-Nijenhuis Manifolds
    Luiz, M. do Nascimento
    Mencattini, I.
    Pedroni, M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (02):
  • [6] Poisson Quasi-Nijenhuis Manifolds and the Toda System
    G. Falqui
    I. Mencattini
    G. Ortenzi
    M. Pedroni
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [7] Poisson Quasi-Nijenhuis Manifolds and the Toda System
    Falqui, G.
    Mencattini, I
    Ortenzi, G.
    Pedroni, M.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2020, 23 (03)
  • [8] REDUCTION AND CONSTRUCTION OF POISSON QUASI-NIJENHUIS MANIFOLDS WITH BACKGROUND
    Cordeiro, Flavio
    Nunes Da Costa, Joana M.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (04) : 539 - 564
  • [9] JACOBI QUASI-NIJENHUIS ALGEBROIDS
    Sheng, Yunhe
    REPORTS ON MATHEMATICAL PHYSICS, 2010, 65 (02) : 271 - 287
  • [10] Some remarks on invariant Poisson quasi-Nijenhuis structures on Lie groups
    Haghighatdoost, Ghorbanali
    Ravanpak, Zohreh
    Rezaei-Aghdam, Adel
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (07)