Poisson quasi-Nijenhuis deformations of the canonical PN structure

被引:1
|
作者
Falqui, G. [1 ,4 ,5 ]
Mencattini, I. [2 ]
Pedroni, M. [3 ,5 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Bicocca, Italy
[2] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, Sao Paulo, Brazil
[3] Univ Bergamo, Dipartimento Ingegnena Gestionale, Informaz & Prod, Bergamo, Italy
[4] via Bonomea 265, I-34136 Sissa, Italy
[5] Sez Milano Bicocca, INFN, Piazza Sci 3, I-20126 Milan, Italy
基金
欧盟地平线“2020”;
关键词
Poisson quasi-Nijenhuis manifolds; Integrable systems; Toda lattices; HAMILTONIAN-STRUCTURE; TODA SYSTEMS;
D O I
10.1016/j.geomphys.2023.104773
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a result which allows us to deform a Poisson-Nijenhuis manifold into a Poisson quasi-Nijenhuis manifold by means of a closed 2-form. Under an additional assumption, the deformed structure is also Poisson-Nijenhuis. We apply this result to show that the canonical Poisson-Nijenhuis structure on R2n gives rise to both the Poisson-Nijenhuis structure of the open (or non periodic) n-particle Toda lattice, introduced by Das and Okubo [7], and the Poisson quasi-Nijenhuis structure of the closed (or periodic) n-particle Toda lattice, described in our recent work [8].(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 34 条
  • [21] A Simple Derivation of Canonical Structure and Quasi-local Hamiltonians in General Relativity
    Jerzy Kijowski
    General Relativity and Gravitation, 1997, 29 : 307 - 343
  • [23] A general quasi-canonical structure for Hamiltonian optimization of sequential energy systems
    Sieniutycz, S.
    International Journal of Applied Thermodynamics, 2000, 3 (04): : 181 - 189
  • [25] Non-canonical Hamiltonian structure and Poisson bracket for two-dimensional hydrodynamics with free surface
    Dyachenko, A., I
    Lushnikov, P. M.
    Zakharov, V. E.
    JOURNAL OF FLUID MECHANICS, 2019, 869 : 526 - 552
  • [26] Quasi-vertical diamond temperature sensor by using Schottky-pn junction structure diode
    Xie, Wenliang
    He, Liang
    Ni, Yiqiang
    Li, Genzhuang
    Wang, Qiliang
    Cheng, Shaoheng
    Li, Liuan
    MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2022, 152
  • [27] The Fock-Rosly Poisson Structure as Defined by a Quasi-Triangular r-Matrix
    Mouquin, Victor
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017, 13
  • [28] QUASI-STATIC CRUSTAL DEFORMATIONS DUE TO A SURFACE LOAD - RHEOLOGICAL STRUCTURE OF THE EARTHS CRUST AND UPPER MANTLE
    IWASAKI, T
    MATSUURA, M
    JOURNAL OF PHYSICS OF THE EARTH, 1982, 30 (06): : 469 - 508
  • [29] A novel anti-tri-missing rib structure with a central ring for maintaining constant Poisson's ratio under large deformations
    Mo, Kelan
    Lu, Fucong
    Wei, Tinghui
    Zhang, Chuanbiao
    He, Yi
    Liu, Yang
    Ling, Xiangyu
    Zhu, Yilin
    THIN-WALLED STRUCTURES, 2025, 209
  • [30] Quasi-symmetry structure of CCl4 molecular assemblies in a graphitic nanopore:: A grand canonical Monte Carlo simulation
    Suzuki, T
    Iiyama, T
    Gubbins, KE
    Kaneko, K
    LANGMUIR, 1999, 15 (18) : 5870 - 5875