Some remarks on invariant Poisson quasi-Nijenhuis structures on Lie groups

被引:0
|
作者
Haghighatdoost, Ghorbanali [1 ]
Ravanpak, Zohreh [1 ]
Rezaei-Aghdam, Adel [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Fac Sci, Tabriz, Iran
[2] Azarbaijan Shahid Madani Univ, Dept Phys, Fac Sci, Tabriz, Iran
关键词
Poisson quasi-Nijenhuis structures; Lie bialgebras and coboundary Lie bialgebras; Generalized complex structures;
D O I
10.1142/S021988781950097X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study right-invariant (respectively, left-invariant) Poisson quasi-Nijenhuis structures on a Lie group G and introduce their infinitesimal counterpart, the so-called r-qn structures on the corresponding Lie algebra g. We investigate the procedure of the classification of such structures on the Lie algebras and then for clarity of our results we classify, up to a natural equivalence, all r-qn structures on two types of four-dimensional real Lie algebras. We mention some remarks on the relation between r-qn structures and the generalized complex structures on the Lie algebras g and also the solutions of modified Yang-Baxter equation (MYBE) on the double of Lie bialgebra g circle plus g*. The results are applied to some relevant examples.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Poisson Quasi-Nijenhuis Structures with Background
    Paulo Antunes
    Letters in Mathematical Physics, 2008, 86 : 33 - 45
  • [2] Poisson Quasi-Nijenhuis Structures with Background
    Antunes, Paulo
    LETTERS IN MATHEMATICAL PHYSICS, 2008, 86 (01) : 33 - 45
  • [3] Quasi-Lie Bialgebroids, Dirac Structures, and Deformations of Poisson Quasi-Nijenhuis Manifolds
    Luiz, M. do Nascimento
    Mencattini, I.
    Pedroni, M.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (02):
  • [4] Poisson Quasi-Nijenhuis Manifolds
    Mathieu Stiénon
    Ping Xu
    Communications in Mathematical Physics, 2007, 270 : 709 - 725
  • [5] Poisson quasi-Nijenhuis manifolds
    Stienon, Mathieu
    Xu, Ping
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (03) : 709 - 725
  • [6] Invariant Poisson-Nijenhuis structures on Lie groups and classification
    Ravanpak, Zohreh
    Rezaei-Aghdam, Adel
    Haghighatdoost, Ghorbanali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (04)
  • [7] Poisson Quasi-Nijenhuis Manifolds and the Toda System
    G. Falqui
    I. Mencattini
    G. Ortenzi
    M. Pedroni
    Mathematical Physics, Analysis and Geometry, 2020, 23
  • [8] Poisson Quasi-Nijenhuis Manifolds and the Toda System
    Falqui, G.
    Mencattini, I
    Ortenzi, G.
    Pedroni, M.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2020, 23 (03)
  • [9] Poisson quasi-Nijenhuis deformations of the canonical PN structure
    Falqui, G.
    Mencattini, I.
    Pedroni, M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 186
  • [10] REDUCTION AND CONSTRUCTION OF POISSON QUASI-NIJENHUIS MANIFOLDS WITH BACKGROUND
    Cordeiro, Flavio
    Nunes Da Costa, Joana M.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2010, 7 (04) : 539 - 564