Automated characterization of patient-ventilator interaction using surface electromyography

被引:3
|
作者
Sauer, Julia [1 ]
Grasshoff, Jan [1 ,2 ]
Carbon, Niklas M. [3 ,4 ,5 ,6 ]
Koch, Willi M. [3 ,4 ,5 ]
Weber-Carstens, Steffen [3 ,4 ,5 ]
Rostalski, Philipp [1 ,2 ]
机构
[1] Univ Lubeck, Inst Elect Engn Med, Ratzeburger Allee 160, D-23562 Lubeck, Germany
[2] Fraunhofer Res Inst Individualized & Cell Based M, Fraunhofer IMTE, Lubeck, Germany
[3] Charite Univ Med Berlin, Dept Anesthesiol & Intens Care Med, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] Humboldt Univ, Berlin, Germany
[6] Friedrich Alexander Univ Erlangen Nurnberg, Uniklin Erlangen, Dept Anesthesiol, Erlangen, Germany
关键词
Mechanical ventilation; Patient-ventilator asynchrony; Automation; Surface electromyography; Esophageal pressure; NEURAL INSPIRATORY TIME; NONINVASIVE VENTILATION; MECHANICAL VENTILATION; ASYNCHRONY; AGREEMENT; ONSET;
D O I
10.1186/s13613-024-01259-5
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BackgroundCharacterizing patient-ventilator interaction in critically ill patients is time-consuming and requires trained staff to evaluate the behavior of the ventilated patient.MethodsIn this study, we recorded surface electromyography (sEMG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{sEMG}$$\end{document}) signals from the diaphragm and intercostal muscles and esophageal pressure (Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}) in mechanically ventilated patients with ARDS. The sEMG recordings were preprocessed, and two different algorithms (triangle algorithm and adaptive thresholding algorithm) were used to automatically detect inspiratory patient effort. Based on the detected inspirations, major asynchronies (ineffective, auto-, and double triggers and double efforts), delayed and synchronous triggers were computationally classified. Reverse triggers were not considered in this study. Subsequently, asynchrony indices were calculated. For the validation of detected efforts, two experts manually annotated inspiratory patient activity in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}, blinded toward each other, the sEMG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{sEMG}$$\end{document} signals, and the algorithmic results. We also classified patient-ventilator interaction and calculated asynchrony indices with manually detected inspirations in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} as a reference for automated asynchrony classification and asynchrony index calculation.ResultsSpontaneous breathing activity was recognized in 22 out of the 36 patients included in the study. Evaluation of the accuracy of the algorithms using 3057 inspiratory efforts in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} demonstrated reliable detection performance for both methods. Across all datasets, we found a high sensitivity (triangle algorithm/adaptive thresholding algorithm: 0.93/0.97) and a high positive predictive value (0.94/0.89) against expert annotations in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}. The average delay of automatically detected inspiratory onset to the Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} reference was -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}79 ms/29 ms for the two algorithms. Our findings also indicate that automatic asynchrony index prediction is reliable. For both algorithms, we found the same deviation of 0.06 +/- 0.13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.06\pm 0.13$$\end{document} to the Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}-based reference.ConclusionsOur study demonstrates the feasibility of automating the quantification of patient-ventilator asynchrony in critically ill patients using noninvasive sEMG. This may facilitate more frequent diagnosis of asynchrony and support improving patient-ventilator interaction.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Managing Patient-Ventilator Dyssynchrony
    MacIntyre, Neil
    CRITICAL CARE MEDICINE, 2021, 49 (12) : 2149 - 2151
  • [42] Understanding Patient-Ventilator Asynchrony Using Diaphragmatic Ultrasonography
    Soilemezi, Eleni
    Vasileiou, Maria
    Spyridonidou, Christina
    Tsagourias, Matthew
    Matamis, Dimitrios
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 200 (04) : E27 - E28
  • [43] Optimization of patient-ventilator interactions
    Kapadia, F
    INTENSIVE CARE MEDICINE, 1998, 24 (03) : 281 - 281
  • [44] Patient-ventilator interaction with conventional and automated management of pressure support during difficult weaning from mechanical ventilation
    Grieco, Domenico Luca
    Bitondo, Maria Maddalena
    Aguirre-Bermeo, Hernan
    Italiano, Stefano
    Idone, Francesco Antonio
    Moccaldo, Antonia
    Santantonio, Maria Teresa
    Eleuteri, Davide
    Antonelli, Massimo
    Mancebo, Jordi
    Maggiore, Salvatore Maurizio
    JOURNAL OF CRITICAL CARE, 2018, 48 : 203 - 210
  • [45] Automated evaluation of typical patient-ventilator asynchronies based on lung hysteretic responses
    Chen, Yuhong
    Zhang, Kun
    Zhou, Cong
    Chase, J. Geoffrey
    Hu, Zhenjie
    BIOMEDICAL ENGINEERING ONLINE, 2023, 22 (01)
  • [46] Mechanical ventilation strategy for pulmonary rehabilitation based on patient-ventilator interaction
    HAO LiMing
    LI Xiao
    SHI Yan
    CAI MaoLin
    REN Shuai
    XIE Fei
    LI YaNa
    WANG Na
    WANG YiXuan
    LUO ZuJin
    XU Meng
    Science China(Technological Sciences), 2021, 64 (04) : 869 - 878
  • [47] Mechanical ventilation strategy for pulmonary rehabilitation based on patient-ventilator interaction
    HAO LiMing
    LI Xiao
    SHI Yan
    CAI MaoLin
    REN Shuai
    XIE Fei
    LI YaNa
    WANG Na
    WANG YiXuan
    LUO ZuJin
    XU Meng
    Science China(Technological Sciences), 2021, (04) : 869 - 878
  • [48] PATIENT-VENTILATOR INTERACTION WITH PRESSURE-ASSISTED MODALITIES OF VENTILATORY SUPPORT
    YOUNES, M
    SEMINARS IN RESPIRATORY MEDICINE, 1993, 14 (04): : 299 - 322
  • [49] Monitoring patient-ventilator interaction by an end-expiratory occlusion maneuver
    Dianti, Jose
    Bertoni, Michele
    Goligher, Ewan C.
    INTENSIVE CARE MEDICINE, 2020, 46 (12) : 2338 - 2341
  • [50] Patient-Ventilator Interaction With Noninvasive Proportional Assist Ventilation in Subjects With COPD
    Zhang, Jianheng
    Luo, Qun
    Chen, Rongchang
    RESPIRATORY CARE, 2020, 65 (01) : 45 - 52