Automated characterization of patient-ventilator interaction using surface electromyography

被引:3
|
作者
Sauer, Julia [1 ]
Grasshoff, Jan [1 ,2 ]
Carbon, Niklas M. [3 ,4 ,5 ,6 ]
Koch, Willi M. [3 ,4 ,5 ]
Weber-Carstens, Steffen [3 ,4 ,5 ]
Rostalski, Philipp [1 ,2 ]
机构
[1] Univ Lubeck, Inst Elect Engn Med, Ratzeburger Allee 160, D-23562 Lubeck, Germany
[2] Fraunhofer Res Inst Individualized & Cell Based M, Fraunhofer IMTE, Lubeck, Germany
[3] Charite Univ Med Berlin, Dept Anesthesiol & Intens Care Med, Berlin, Germany
[4] Free Univ Berlin, Berlin, Germany
[5] Humboldt Univ, Berlin, Germany
[6] Friedrich Alexander Univ Erlangen Nurnberg, Uniklin Erlangen, Dept Anesthesiol, Erlangen, Germany
关键词
Mechanical ventilation; Patient-ventilator asynchrony; Automation; Surface electromyography; Esophageal pressure; NEURAL INSPIRATORY TIME; NONINVASIVE VENTILATION; MECHANICAL VENTILATION; ASYNCHRONY; AGREEMENT; ONSET;
D O I
10.1186/s13613-024-01259-5
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
BackgroundCharacterizing patient-ventilator interaction in critically ill patients is time-consuming and requires trained staff to evaluate the behavior of the ventilated patient.MethodsIn this study, we recorded surface electromyography (sEMG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{sEMG}$$\end{document}) signals from the diaphragm and intercostal muscles and esophageal pressure (Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}) in mechanically ventilated patients with ARDS. The sEMG recordings were preprocessed, and two different algorithms (triangle algorithm and adaptive thresholding algorithm) were used to automatically detect inspiratory patient effort. Based on the detected inspirations, major asynchronies (ineffective, auto-, and double triggers and double efforts), delayed and synchronous triggers were computationally classified. Reverse triggers were not considered in this study. Subsequently, asynchrony indices were calculated. For the validation of detected efforts, two experts manually annotated inspiratory patient activity in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}, blinded toward each other, the sEMG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{sEMG}$$\end{document} signals, and the algorithmic results. We also classified patient-ventilator interaction and calculated asynchrony indices with manually detected inspirations in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} as a reference for automated asynchrony classification and asynchrony index calculation.ResultsSpontaneous breathing activity was recognized in 22 out of the 36 patients included in the study. Evaluation of the accuracy of the algorithms using 3057 inspiratory efforts in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} demonstrated reliable detection performance for both methods. Across all datasets, we found a high sensitivity (triangle algorithm/adaptive thresholding algorithm: 0.93/0.97) and a high positive predictive value (0.94/0.89) against expert annotations in Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}. The average delay of automatically detected inspiratory onset to the Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document} reference was -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}79 ms/29 ms for the two algorithms. Our findings also indicate that automatic asynchrony index prediction is reliable. For both algorithms, we found the same deviation of 0.06 +/- 0.13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.06\pm 0.13$$\end{document} to the Pes\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_{\textrm{es}}$$\end{document}-based reference.ConclusionsOur study demonstrates the feasibility of automating the quantification of patient-ventilator asynchrony in critically ill patients using noninvasive sEMG. This may facilitate more frequent diagnosis of asynchrony and support improving patient-ventilator interaction.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Triggering of the Ventilator in Patient-Ventilator Interactions Discussion
    Kallet
    Sassoon
    Branson
    Kacmarek
    Parthasarathy
    Younes
    Pierson
    Hurford
    Epstein
    Hess
    RESPIRATORY CARE, 2011, 56 (01) : 48 - 51
  • [32] Automated detection of patient-ventilator asynchrony: new tool or new toy?
    Piquilloud, Lise
    Jolliet, Philippe
    Revelly, Jean-Pierre
    CRITICAL CARE, 2013, 17 (06):
  • [33] Automated detection of patient-ventilator asynchronies during noninvasive ventilation (NIV)
    Fresnel, Emeline
    Kerfourn, Adrien
    Cuvelier, Antoine
    Patout, Maxime
    EUROPEAN RESPIRATORY JOURNAL, 2019, 54
  • [34] Optimizing patient-ventilator synchrony
    Epstein, SK
    SEMINARS IN RESPIRATORY AND CRITICAL CARE MEDICINE, 2001, 22 (02) : 137 - 152
  • [35] Patient-Ventilator Interaction During Noninvasive Ventilation in Simulated COPD
    Moerer, Onnen
    Harnisch, Lars-Olav
    Herrmann, Peter
    Zippel, Carsten
    Quintel, Michael
    RESPIRATORY CARE, 2016, 61 (01) : 15 - 22
  • [36] Neurally adjusted ventilatory assist improves patient-ventilator interaction
    Piquilloud, Lise
    Vignaux, Laurence
    Bialais, Emilie
    Roeseler, Jean
    Sottiaux, Thierry
    Laterre, Pierre-Francois
    Jolliet, Philippe
    Tassaux, Didier
    INTENSIVE CARE MEDICINE, 2011, 37 (02) : 263 - 271
  • [37] Automated detection of patient-ventilator asynchrony: new tool or new toy?
    Lise Piquilloud
    Philippe Jolliet
    Jean-Pierre Revelly
    Critical Care, 17
  • [38] Management of Patient-Ventilator Asynchrony
    Bailey, James M.
    ANESTHESIOLOGY, 2021, 134 (04) : 629 - 636
  • [39] Monitoring patient-ventilator asynchrony
    Dres, Martin
    Rittayamai, Nuttapol
    Brochard, Laurent
    CURRENT OPINION IN CRITICAL CARE, 2016, 22 (03) : 246 - 253
  • [40] Optimization of patient-ventilator interactions
    F. Kapadia
    Intensive Care Medicine, 1998, 24 : 281 - 281