In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second-order linear parabolic problems by allowing polynomial approximations with various degrees for each local element. Convergence of both semidiscrete and fully discrete WG solutions are established in L infinity (L2) and L infinity (H1) norms for a general WG element (Pk(K), Pj(??????K), [Pl(K)]2), where k > 1, j > 0 and l > 0 are arbitrary integers. The fully discrete space-time discretization is based on a first order in time Euler scheme. Numerical experiments are reported to justify the robustness, reliability and accuracy of the WG finite element method.
机构:
Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
Univ Al Qadisiyah, Dept Math, Al Diwaniyah, IraqUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Al-Taweel, Ahmed
Hussain, Saqib
论文数: 0引用数: 0
h-index: 0
机构:
Texas A&M Int Univ, Dept Math & Phys, Laredo, TX 78041 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
Hussain, Saqib
Wang, Xiaoshen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Arkansas, Dept Math, Little Rock, AR 72204 USAUniv Arkansas, Dept Math, Little Rock, AR 72204 USA
机构:
Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
Gu, Shanshan
Chai, Shimin
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
Chai, Shimin
Zhou, Chenguang
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China
Acad Math & Syst Sci, Chinese Acad Sci, LSEC, ICMSEC, Beijing 100190, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China
Zhou, Chenguang
Zhou, Jinhui
论文数: 0引用数: 0
h-index: 0
机构:
Jilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R ChinaJilin Univ, Sch Math, Changchun 130012, Jilin, Peoples R China