A systematic study on weak Galerkin finite element method for second-order parabolic problems

被引:10
|
作者
Deka, Bhupen [1 ,2 ]
Kumar, Naresh [1 ]
机构
[1] Indian Inst Technol Guwahati, Dept Math, Gauhati, India
[2] Indian Inst Technol Guwahati, Dept Math, Gauhati 781039, India
基金
中国国家自然科学基金;
关键词
convergence analysis; discrete weak gradient; parabolic problems; semidiscrete and fully discrete schemes; weak Galerkin finite element method; DISCONTINUOUS GALERKIN; EQUATION SUBJECT; INTERFACE PROBLEMS; TIME;
D O I
10.1002/num.22973
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work, we have described a systematic numerical study on weak Galerkin (WG) finite element method for second-order linear parabolic problems by allowing polynomial approximations with various degrees for each local element. Convergence of both semidiscrete and fully discrete WG solutions are established in L infinity (L2) and L infinity (H1) norms for a general WG element (Pk(K), Pj(??????K), [Pl(K)]2), where k > 1, j > 0 and l > 0 are arbitrary integers. The fully discrete space-time discretization is based on a first order in time Euler scheme. Numerical experiments are reported to justify the robustness, reliability and accuracy of the WG finite element method.
引用
收藏
页码:2444 / 2474
页数:31
相关论文
共 50 条
  • [31] Discontinuous Galerkin finite element method for parabolic problems
    Kaneko, Hideaki
    Bey, Kim S.
    Hou, Gene J. W.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) : 388 - 402
  • [32] A computational study of the weak Galerkin method for second-order elliptic equations
    Lin Mu
    Junping Wang
    Yanqiu Wang
    Xiu Ye
    Numerical Algorithms, 2013, 63 : 753 - 777
  • [33] A computational study of the weak Galerkin method for second-order elliptic equations
    Mu, Lin
    Wang, Junping
    Wang, Yanqiu
    Ye, Xiu
    NUMERICAL ALGORITHMS, 2013, 63 (04) : 753 - 777
  • [34] Weak Galerkin finite element methods for a fourth order parabolic equation
    Chai, Shimin
    Zou, Yongkui
    Zhou, Chenguang
    Zhao, Wenju
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (05) : 1745 - 1755
  • [35] Galerkin's finite element formulation of the second-order boundary-value problems
    Iqbal, S.
    Mirza, A. M.
    Tirmizi, I. A.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (09) : 2032 - 2042
  • [36] Discontinuous Galerkin Finite Volume Element Methods for Second-Order Linear Elliptic Problems
    Kumar, Sarvesh
    Nataraj, Neela
    Pani, Amiya K.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (06) : 1402 - 1424
  • [37] A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems
    Long Chen
    Junping Wang
    Xiu Ye
    Journal of Scientific Computing, 2014, 59 : 496 - 511
  • [38] A Posteriori Error Estimates for Weak Galerkin Finite Element Methods for Second Order Elliptic Problems
    Chen, Long
    Wang, Junping
    Ye, Xiu
    JOURNAL OF SCIENTIFIC COMPUTING, 2014, 59 (02) : 496 - 511
  • [39] A discontinuous finite volume element method for second-order elliptic problems
    Bi, Chunjia
    Liu, Mingming
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (02) : 425 - 440
  • [40] A quadrature finite element method for semilinear second-order hyperbolic problems
    Mustapha, K.
    Mustapha, H.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2008, 24 (02) : 350 - 367