Modularized and scalable compilation for double quantum dot quantum computing

被引:1
|
作者
He, Run-Hong [1 ,2 ]
Xu, Xu-Sheng [3 ]
Byrd, Mark S. [4 ]
Wang, Zhao-Ming [1 ]
机构
[1] Ocean Univ China, Coll Phys & Optoelect Engn, Qingdao 266100, Peoples R China
[2] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing 101408, Peoples R China
[3] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[4] Southern Illinois Univ, Dept Phys, Carbondale, IL 62901 USA
基金
美国国家科学基金会; 中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
semiconductor double quantum dots; quantum gate compilation; quantum program compilation; variational quantum algorithm;
D O I
10.1088/2058-9565/acfe38
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Any quantum program on a realistic quantum device must be compiled into an executable form while taking into account the underlying hardware constraints. Stringent restrictions on architecture and control imposed by physical platforms make this very challenging. In this paper, based on the quantum variational algorithm, we propose a novel scheme to train an Ansatz circuit and realize high-fidelity compilation of a set of universal quantum gates for singlet-triplet qubits in semiconductor double quantum dots, a fairly heavily constrained system. Furthermore, we propose a scalable architecture for a modular implementation of quantum programs in this constrained systems and validate its performance with two representative demonstrations, the Grover's algorithm for the database searching (static compilation) and a variant of variational quantum eigensolver for the Max-Cut optimization (dynamic compilation). Our methods are potentially applicable to a wide range of physical devices. This work constitutes an important stepping-stone for exploiting the potential for advanced and complicated quantum algorithms on near-term devices.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] From Boolean functions to quantum circuits: A scalable quantum compilation flow in C plus
    Schmitt, Bruno
    Mozafari, Fereshte
    Meuli, Giulia
    Riener, Heinz
    De Micheli, Giovanni
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 1044 - 1049
  • [32] Solid state coherent quantum dot system for quantum computing and quantum transmission
    Matsueda, H
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2003, 31 (01) : 23 - 27
  • [33] Computing with random quantum dot repulsion
    Zhang, Ben
    Lusth, John C.
    INFORMATION SCIENCES, 2008, 178 (06) : 1519 - 1532
  • [34] Spin-Based Quantum Dot Quantum Computing in Silicon
    Mark A. Eriksson
    Mark Friesen
    Susan N. Coppersmith
    Robert Joynt
    Levente J. Klein
    Keith Slinker
    Charles Tahan
    P. M. Mooney
    J. O. Chu
    S. J. Koester
    Quantum Information Processing, 2004, 3 : 133 - 146
  • [35] Issues of practical realization of a quantum dot register for quantum computing
    Balandin, A
    Jin, GL
    Wang, KL
    JOURNAL OF ELECTRONIC MATERIALS, 2000, 29 (05) : 549 - 553
  • [36] Issues of practical realization of a quantum dot register for quantum computing
    Alexander Balandin
    Gaolong Jin
    Kang L. Wang
    Journal of Electronic Materials, 2000, 29 : 549 - 553
  • [37] Spin-based Quantum Dot Quantum Computing in Silicon
    Eriksson, Mark A.
    Friesen, Mark
    Coppersmith, Susan N.
    Joynt, Robert
    Klein, Levente J.
    Slinker, Keith
    Tahan, Charles
    Mooney, P. M.
    Chu, J. O.
    Koester, S. J.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 133 - 146
  • [38] Quantum criticality in a double-quantum-dot system
    Zarand, Gergely
    Chung, Chung-Hou
    Simon, Pascal
    Vojta, Matthias
    PHYSICAL REVIEW LETTERS, 2006, 97 (16)
  • [39] Quantum entanglement between a double quantum dot and photons
    Dong, Yong
    Kuang, Le-Man
    PHYSICS LETTERS A, 2007, 367 (1-2) : 40 - 46
  • [40] All-optical quantum dot implementation for quantum computing
    D'Amico, I
    Biolatti, E
    Pazy, E
    Zanardi, P
    Rossi, F
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 13 (2-4): : 620 - 623