Modularized and scalable compilation for double quantum dot quantum computing

被引:1
|
作者
He, Run-Hong [1 ,2 ]
Xu, Xu-Sheng [3 ]
Byrd, Mark S. [4 ]
Wang, Zhao-Ming [1 ]
机构
[1] Ocean Univ China, Coll Phys & Optoelect Engn, Qingdao 266100, Peoples R China
[2] Chinese Acad Sci, Inst Software, State Key Lab Comp Sci, Beijing 101408, Peoples R China
[3] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[4] Southern Illinois Univ, Dept Phys, Carbondale, IL 62901 USA
基金
美国国家科学基金会; 中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
semiconductor double quantum dots; quantum gate compilation; quantum program compilation; variational quantum algorithm;
D O I
10.1088/2058-9565/acfe38
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Any quantum program on a realistic quantum device must be compiled into an executable form while taking into account the underlying hardware constraints. Stringent restrictions on architecture and control imposed by physical platforms make this very challenging. In this paper, based on the quantum variational algorithm, we propose a novel scheme to train an Ansatz circuit and realize high-fidelity compilation of a set of universal quantum gates for singlet-triplet qubits in semiconductor double quantum dots, a fairly heavily constrained system. Furthermore, we propose a scalable architecture for a modular implementation of quantum programs in this constrained systems and validate its performance with two representative demonstrations, the Grover's algorithm for the database searching (static compilation) and a variant of variational quantum eigensolver for the Max-Cut optimization (dynamic compilation). Our methods are potentially applicable to a wide range of physical devices. This work constitutes an important stepping-stone for exploiting the potential for advanced and complicated quantum algorithms on near-term devices.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A minimal double quantum dot
    Zheng, Hao
    Zhang, Junyi
    Berndt, Richard
    SCIENTIFIC REPORTS, 2017, 7
  • [22] Scalable manufacturing processes for quantum computing
    Nature Electronics, 2022, 5 : 201 - 202
  • [23] Towards scalable silicon quantum computing
    Vinet, M.
    Hutin, L.
    Bertrand, B.
    Bohuslayskyi, H.
    Corna, A.
    Amisse, A.
    Crippa, A.
    Bourdet, L.
    Maurand, R.
    Barraud, S.
    Urdampilleta, M.
    Bauerle, C.
    Sanquer, M.
    Jehl, X.
    Niquet, Y. -M.
    De Franceschi, S.
    Meunier, T.
    2018 76TH DEVICE RESEARCH CONFERENCE (DRC), 2018,
  • [24] A Functional Architecture for Scalable Quantum Computing
    Sete, Eyob A.
    Zeng, William J.
    Rigetti, Chad T.
    2016 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2016,
  • [25] Scalable quantum computing with qudits on a graph
    Kiktenko, E. O.
    Nikolaeva, A. S.
    Xu, Peng
    Shlyapnikov, G., V
    Fedorov, A. K.
    PHYSICAL REVIEW A, 2020, 101 (02)
  • [26] Scalable manufacturing processes for quantum computing
    Pillarisetty, Ravi
    NATURE ELECTRONICS, 2022, 5 (04) : 201 - 202
  • [27] A minimal double quantum dot
    Hao Zheng
    Junyi Zhang
    Richard Berndt
    Scientific Reports, 7
  • [28] Supercurrent in a Double Quantum Dot
    Saldana, J. C. Estrada
    Vekris, A.
    Steffensen, G.
    Zitko, R.
    Krogstrup, P.
    Paaske, J.
    Grove-Rasmussen, K.
    Nygard, J.
    PHYSICAL REVIEW LETTERS, 2018, 121 (25)
  • [29] Multilayer microwave integrated quantum circuits for scalable quantum computing
    Teresa Brecht
    Wolfgang Pfaff
    Chen Wang
    Yiwen Chu
    Luigi Frunzio
    Michel H Devoret
    Robert J Schoelkopf
    npj Quantum Information, 2
  • [30] Multilayer microwave integrated quantum circuits for scalable quantum computing
    Brecht, Teresa
    Pfaff, Wolfgang
    Wang, Chen
    Chu, Yiwen
    Frunzio, Luigi
    Devoret, Michel H.
    Schoelkopf, Robert J.
    NPJ QUANTUM INFORMATION, 2016, 2