Comparative Study for Optimized Deep Learning-Based Road Accidents Severity Prediction Models

被引:2
|
作者
Hijazi, Hussam [1 ]
Sattar, Karim [2 ]
Al-Ahmadi, Hassan M. [1 ,2 ]
El-Ferik, Sami [2 ,3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Civil & Environm Engn, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Smart Mobil & Logist, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Dept Control & Instrumentat Engn, Dhahran 31261, Saudi Arabia
关键词
Injury severity prediction; Deep learning; Feature importance; Bayesian optimization; Performance metrics; CRASH INJURY SEVERITY; ARTIFICIAL NEURAL-NETWORK; TRAFFIC ACCIDENTS; CLASSIFICATION;
D O I
10.1007/s13369-023-08510-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Road traffic accidents remain a major cause of fatalities and injuries worldwide. Effective classification of accident type and severity is crucial for prompt post-accident protocols and the development of comprehensive road safety policies. This study explores the application of deep learning techniques for predicting crash injury severity in the Eastern Province of Saudi Arabia. Five deep learning models were trained and evaluated, including various variants of feedforward multilayer perceptron, a back-propagated artificial neural network (ANN), an ANN with radial basis function (RPF), and tabular data learning network (TabNet). The models were optimized using Bayesian optimization (BO) and employed the synthetic minority oversampling technique (SMOTE) for oversampling the training dataset. While SMOTE enhanced balanced accuracy for ANN with RBF and TabNet, it compromised precision and increased recall. The results indicated that oversampling techniques did not consistently improve model performance. Additionally, significant features were identified using least absolute shrinkage and selection operator (LASSO) regularization, feature importance, and permutation importance. The results indicated that oversampling techniques did not consistently improve model performance. While SMOTE enhanced balanced accuracy for ANN with RBF and TabNet, it compromised precision and increased recall. The study's findings emphasize the consistent significance of the 'Number of Injuries Major' feature as a vital predictor in deep learning models, regardless of the selection techniques employed. These results shed light on the pivotal role played by the count of individuals with major injuries in influencing the severity of crash injuries, highlighting its potential relevance in shaping road safety policy development.
引用
收藏
页码:5853 / 5873
页数:21
相关论文
共 50 条
  • [41] Explaining Deep Learning-Based Driver Models
    Lorente, Maria Paz Sesmero
    Lopez, Elena Magan
    Florez, Laura Alvarez
    Espino, Agapito Ledezma
    Martinez, Jose Antonio Iglesias
    de Miguel, Araceli Sanchis
    APPLIED SCIENCES-BASEL, 2021, 11 (08):
  • [42] Machine learning-based prediction models in neurosurgery
    Habashy, Karl J.
    Arrieta, Victor A.
    Feghali, James
    NEUROSURGICAL FOCUS, 2023, 55 (03)
  • [43] A Study of Deep Learning-Based Face Recognition Models for Sibling Identification
    Goel, Rita
    Mehmood, Irfan
    Ugail, Hassan
    SENSORS, 2021, 21 (15)
  • [44] Groundwater level prediction using deep learning-based recurrent neural network and numerical modeling: a comparative study
    Ehsan Hafezifar
    Mojtaba Shourian
    Earth Science Informatics, 2025, 18 (2)
  • [46] DeepREF: A Framework for Optimized Deep Learning-based Relation Classification
    Nascimento, Igor
    Lima, Rinaldo
    Chifu, Adrian
    Espinasse, Bernard
    Fournier, Sebastien
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 4513 - 4522
  • [47] Machine Learning and Deep Learning-Based Students’ Grade Prediction
    Korchi A.
    Messaoudi F.
    Abatal A.
    Manzali Y.
    Operations Research Forum, 4 (4)
  • [48] Deep Learning-based Approach on Risk Estimation of Urban Traffic Accidents
    Jin, Zhixiong
    Noh, Byeongjoon
    Cho, Haechan
    Yeo, Hwasoo
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 1446 - 1451
  • [49] "Note Bloat" impacts deep learning-based NLP models for clinical prediction tasks
    Liu, Jinghui
    Capurro, Daniel
    Nguyen, Anthony
    Verspoor, Karin
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 133
  • [50] Prevention of smombie accidents using deep learning-based object detection
    Kim, Hyun-Seok
    Kim, Geon-Hwan
    Cho, You-Ze
    ICT EXPRESS, 2022, 8 (04): : 618 - 625