Comparative Study for Optimized Deep Learning-Based Road Accidents Severity Prediction Models

被引:2
|
作者
Hijazi, Hussam [1 ]
Sattar, Karim [2 ]
Al-Ahmadi, Hassan M. [1 ,2 ]
El-Ferik, Sami [2 ,3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Civil & Environm Engn, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Smart Mobil & Logist, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Dept Control & Instrumentat Engn, Dhahran 31261, Saudi Arabia
关键词
Injury severity prediction; Deep learning; Feature importance; Bayesian optimization; Performance metrics; CRASH INJURY SEVERITY; ARTIFICIAL NEURAL-NETWORK; TRAFFIC ACCIDENTS; CLASSIFICATION;
D O I
10.1007/s13369-023-08510-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Road traffic accidents remain a major cause of fatalities and injuries worldwide. Effective classification of accident type and severity is crucial for prompt post-accident protocols and the development of comprehensive road safety policies. This study explores the application of deep learning techniques for predicting crash injury severity in the Eastern Province of Saudi Arabia. Five deep learning models were trained and evaluated, including various variants of feedforward multilayer perceptron, a back-propagated artificial neural network (ANN), an ANN with radial basis function (RPF), and tabular data learning network (TabNet). The models were optimized using Bayesian optimization (BO) and employed the synthetic minority oversampling technique (SMOTE) for oversampling the training dataset. While SMOTE enhanced balanced accuracy for ANN with RBF and TabNet, it compromised precision and increased recall. The results indicated that oversampling techniques did not consistently improve model performance. Additionally, significant features were identified using least absolute shrinkage and selection operator (LASSO) regularization, feature importance, and permutation importance. The results indicated that oversampling techniques did not consistently improve model performance. While SMOTE enhanced balanced accuracy for ANN with RBF and TabNet, it compromised precision and increased recall. The study's findings emphasize the consistent significance of the 'Number of Injuries Major' feature as a vital predictor in deep learning models, regardless of the selection techniques employed. These results shed light on the pivotal role played by the count of individuals with major injuries in influencing the severity of crash injuries, highlighting its potential relevance in shaping road safety policy development.
引用
收藏
页码:5853 / 5873
页数:21
相关论文
共 50 条
  • [21] Prediction of Road Accidents' Severity on Russian Roads Using Machine Learning Techniques
    Donchenko, D.
    Sadovnikova, N.
    Parygin, D.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING, ICIE 2019, VOL II, 2020, : 1493 - 1501
  • [22] A Comparative Study of Deep Learning-Based Vulnerability Detection System
    Li, Zhen
    Zou, Deqing
    Tang, Jing
    Zhang, Zhihao
    Sun, Mingqian
    Jin, Hai
    IEEE ACCESS, 2019, 7 : 103184 - 103197
  • [23] A Comparative Text Classification Study with Deep Learning-Based Algorithms
    Koksal, Omer
    Akgul, Ozlem
    2022 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2022), 2022, : 387 - 391
  • [24] Pedestrian Trajectory Prediction With Learning-based Approaches: A Comparative Study
    Li, Yang
    Xin, Long
    Yu, Dameng
    Dai, Pengwen
    Wang, Jianqiang
    Li, Shengbo Eben
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 919 - 926
  • [25] COMPARATIVE STUDY OF DEEP LEARNING MODELS FOR ACCIDENTS CLASSIFICATION IN NPP: EMPHASIZING TRANSPARENCY AND PERFORMANCE
    Najar, Merouane
    Wang, He
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 10, ICONE31 2024, 2024,
  • [26] Comparative Study on Distributed Lightweight Deep Learning Models for Road Pothole Detection
    Tahir, Hassam
    Jung, Eun-Sung
    SENSORS, 2023, 23 (09)
  • [27] Deep Learning-Based Algorithm for Road Defect Detection
    Li, Shaoxiang
    Zhang, Dexiang
    SENSORS, 2025, 25 (05)
  • [28] Improving Rock Type Identification Through Advanced Deep Learning-Based Segmentation Models: A Comparative Study
    Aydin, Ilhan
    Kilic, Ayse Didem
    Sener, Taha Kubilay
    APPLIED SCIENCES-BASEL, 2025, 15 (03):
  • [29] Deep Learning-Based Classification of the Psychiatric Symptoms Severity
    Ham, Jinsil
    Oh, Jooyoung
    2023 IEEE 19TH INTERNATIONAL CONFERENCE ON BODY SENSOR NETWORKS, BSN, 2023,
  • [30] Deep Learning-Based Conformal Prediction of Toxicity
    Zhang, Jin
    Norinder, Ulf
    Svensson, Fredrik
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) : 2648 - 2657