Towards integrated and fine-grained traffic forecasting: A Spatio-Temporal Heterogeneous Graph Transformer approach

被引:13
|
作者
Li, Guangyue [1 ]
Zhao, Zilong [1 ]
Guo, Xiaogang [1 ]
Tang, Luliang [1 ]
Zhang, Huazu [1 ]
Wang, Jinghan [2 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R China
[2] Wuhan Univ, Sch Resource & Environm Sci, Wuhan 430079, Peoples R China
关键词
Integrated traffic forecasting; Spatio-temporal heterogeneity; Heterogeneous road network graph; Spatio-temporal transformer; Trajectory data; NETWORKS;
D O I
10.1016/j.inffus.2023.102063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fine-grained traffic forecasting is crucial for the management of urban transportation systems. Road segments and intersection turns, as vital elements of road networks, exhibit heterogeneous spatial structures, yet their traffic states are interconnected due to spatial proximity. The heterogeneity and interrelationships arising from different road network elements pose major challenges to accurate traffic forecasting. However, existing fore-casting studies focus solely on bidirectional road segments, disregarding the relationships between roads and turns. To achieve integrated traffic forecasting that considers both road segments and intersection turns, we propose a novel Spatio-Temporal Heterogeneous Graph Transformer (STHGFormer). For road network repre-sentation, we innovatively define a Heterogeneous Road network Graph (HRG), which provides a comprehensive depiction of the complete traffic network and emphasizes its inherent heterogeneity. Then, we propose a Het-erogeneous Spatial Embedding (HSE) module to encode road network information, including heterogeneous attributes and interactions in the HRG. Based on the spatial information encoded by HSE, a unified SpaFormer, serving as the spatial module of STHGFormer, captures the interdependencies between roads and turns across the entire traffic network. To mitigate the impact of high temporal fluctuation, we embed the Adaptive Soft Threshold (AST) module into TempFormer, which dynamically adjusts the threshold to enhance the analysis capability of complex temporal correlations. Experiments conducted on a real-world dataset from Wuhan, China, demonstrate that STHGFormer outperforms state-of-the-art methods, achieving a 6.1 % improvement in road forecasting and an 8.5 % improvement in turn forecasting.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A heterogeneous traffic spatio-temporal graph convolution model for traffic prediction
    Xu, Jinhua
    Li, Yuran
    Lu, Wenbo
    Wu, Shuai
    Li, Yan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 641
  • [22] Adaptive Spatio-temporal Graph Neural Network for traffic forecasting
    Ta, Xuxiang
    Liu, Zihan
    Hu, Xiao
    Yu, Le
    Sun, Leilei
    Du, Bowen
    KNOWLEDGE-BASED SYSTEMS, 2022, 242
  • [23] Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting
    Tang, Jiabin
    Qian, Tang
    Liu, Shijing
    Du, Shengdong
    Hu, Jie
    Li, Tianrui
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [24] A Survey on Spatio-Temporal Graph Neural Networks for Traffic Forecasting
    Zhang, Can
    Lei, Minglong
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 1417 - 1423
  • [25] Probabilistic spatio-temporal graph convolutional network for traffic forecasting
    Karim, Atkia Akila
    Nower, Naushin
    APPLIED INTELLIGENCE, 2024, : 7070 - 7085
  • [26] Spatio-Temporal Latent Graph Structure Learning for Traffic Forecasting
    Tang, Jiabin
    Qian, Tang
    Liu, Shijing
    Du, Shengdong
    Hu, Jie
    Li, Tianrui
    Proceedings of the International Joint Conference on Neural Networks, 2022, 2022-July
  • [27] Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting
    Zheng, Chuanpan
    Fan, Xiaoliang
    Pan, Shirui
    Jin, Haibing
    Peng, Zhaopeng
    Wu, Zonghan
    Wang, Cheng
    Yu, Philip S.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (01) : 372 - 385
  • [28] Hierarchical spatio-temporal graph ODE networks for traffic forecasting
    Xu, Tao
    Deng, Jiaming
    Ma, Ruolin
    Zhang, Zixiang
    Zhao, Yingying
    Zhao, Zhilong
    Zhang, Juntao
    INFORMATION FUSION, 2025, 113
  • [29] Efficient Spatio-Temporal Graph Neural Networks for Traffic Forecasting
    Lubarsky, Yackov
    Gaissinski, Alexei
    Kisilev, Pavel
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT II, 2023, 676 : 109 - 120
  • [30] Spatio-Temporal Meta-Graph Learning for Traffic Forecasting
    Jiang, Renhe
    Wang, Zhaonan
    Yong, Jiawei
    Jeph, Puneet
    Chen, Quanjun
    Kobayashi, Yasumasa
    Song, Xuan
    Fukushima, Shintaro
    Suzumura, Toyotaro
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 7, 2023, : 8078 - 8086