A heterogeneous traffic spatio-temporal graph convolution model for traffic prediction

被引:5
|
作者
Xu, Jinhua [1 ,2 ]
Li, Yuran [1 ]
Lu, Wenbo [3 ]
Wu, Shuai [1 ]
Li, Yan [1 ]
机构
[1] Changan Univ, Sch Transportat Engn, Xian, Peoples R China
[2] Queensland Univ Technol QUT, Ctr Accid Res & Rd Safety Queensland CARRS Q, Kelvin Grove, Qld, Australia
[3] Southeast Univ, Sch Transportat, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; Heterogeneous graph; Spatio-temporal heterogeneity; Graph convolution network; Intelligent transportation systems; Smart city; NETWORK;
D O I
10.1016/j.physa.2024.129746
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Smart cities require advanced traffic management systems. Traffic forecasting is an essential task of the advanced transportation system. Traffic spatio-temporal data are often heterogeneous. Most existing traffic prediction models predominantly use separate components to extract the temporal and spatial features of traffic data. However, this overlooks the intrinsic connections between the spatio-temporal features of traffic data. To directly mine the spatio-temporal heterogeneity, this study constructs a global heterogeneous traffic spatio-temporal graph and proposes the Heterogeneous Traffic Spatio-Temporal Graph Convolution (HTSTGC). To reduce the complexity of the model, Simple Graph Convolution (SGC) is used to extract semi-structured meta-graph information. The receptive fields that capture temporal and spatial features can be flexibly adjusted separately through clever design, which can balance the performance and efficiency of the model. Finally, the feature fusion module applies Gated Graph Neural Network (GGNN) to fuse temporal and spatial features. The results on the PEMS datasets reveal that jointly modeling different types of relationships can improve the traffic prediction performance of the model. The proposed HTSTGC has better performance than the baseline methods in most cases. The research results can support urban traffic control, traffic pollution reduction, and sustainable urban development.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Traffic Flow Prediction Model Based on Spatio-Temporal Dilated Graph Convolution
    Sun, Xiufang
    Li, Jianbo
    Lv, Zhiqiang
    Dong, Chuanhao
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2020, 14 (09): : 3598 - 3614
  • [2] ISTGCN: Integrated spatio-temporal modeling for traffic prediction using traffic graph convolution network
    Gupta, Arti
    Maurya, Manish Kumar
    Goyal, Nikhil
    Chaurasiya, Vijay Kumar
    APPLIED INTELLIGENCE, 2023, 53 (23) : 29153 - 29168
  • [3] ISTGCN: Integrated spatio-temporal modeling for traffic prediction using traffic graph convolution network
    Arti Gupta
    Manish Kumar Maurya
    Nikhil Goyal
    Vijay Kumar Chaurasiya
    Applied Intelligence, 2023, 53 : 29153 - 29168
  • [4] Heterogeneous Spatio-Temporal Graph Convolution Network for Traffic Forecasting with Missing Values
    Zhong, Weida
    Suo, Qiuling
    Jia, Xiaowei
    Zhang, Aidong
    Su, Lu
    2021 IEEE 41ST INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2021), 2021, : 707 - 717
  • [5] Spatio-Temporal Attention-based Graph Convolution Networks for Traffic Prediction
    Chongqing University, College of Computer Science, Chongqing, China
    Conf. Proc. IEEE Int. Conf. Syst. Man Cybern., 2022, (642-649): : 642 - 649
  • [6] Traffic flow prediction model based on spatio-temporal graph convolution with multi-information fusion
    Meng, Chuang
    Wang, Hui
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (08): : 1541 - 1550
  • [7] A Spatio-Temporal Traffic Flow Prediction Method Based on Dynamic Graph Convolution Network
    Yang, Guoliang
    Yu, Huasheng
    Xi, Hao
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 5364 - 5369
  • [8] Traffic Prediction Model Based on Spatio-temporal Graph Attention Network
    Chen, Jing
    Wang, Linkai
    Wang, Wei
    Song, Ruizhuo
    2022 4TH INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS, ICCR, 2022, : 428 - 432
  • [9] Spatio-temporal graph attention networks for traffic prediction
    Ma, Chuang
    Yan, Li
    Xu, Guangxia
    TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2024, 16 (09): : 978 - 988
  • [10] Spatio-Temporal Graph Attention Convolution Network for Traffic Flow Forecasting
    Liu, Kun
    Zhu, Yifan
    Wang, Xiao
    Ji, Hongya
    Huang, Chengfei
    TRANSPORTATION RESEARCH RECORD, 2024, 2678 (09) : 136 - 149