A heterogeneous traffic spatio-temporal graph convolution model for traffic prediction

被引:5
|
作者
Xu, Jinhua [1 ,2 ]
Li, Yuran [1 ]
Lu, Wenbo [3 ]
Wu, Shuai [1 ]
Li, Yan [1 ]
机构
[1] Changan Univ, Sch Transportat Engn, Xian, Peoples R China
[2] Queensland Univ Technol QUT, Ctr Accid Res & Rd Safety Queensland CARRS Q, Kelvin Grove, Qld, Australia
[3] Southeast Univ, Sch Transportat, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic flow prediction; Heterogeneous graph; Spatio-temporal heterogeneity; Graph convolution network; Intelligent transportation systems; Smart city; NETWORK;
D O I
10.1016/j.physa.2024.129746
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Smart cities require advanced traffic management systems. Traffic forecasting is an essential task of the advanced transportation system. Traffic spatio-temporal data are often heterogeneous. Most existing traffic prediction models predominantly use separate components to extract the temporal and spatial features of traffic data. However, this overlooks the intrinsic connections between the spatio-temporal features of traffic data. To directly mine the spatio-temporal heterogeneity, this study constructs a global heterogeneous traffic spatio-temporal graph and proposes the Heterogeneous Traffic Spatio-Temporal Graph Convolution (HTSTGC). To reduce the complexity of the model, Simple Graph Convolution (SGC) is used to extract semi-structured meta-graph information. The receptive fields that capture temporal and spatial features can be flexibly adjusted separately through clever design, which can balance the performance and efficiency of the model. Finally, the feature fusion module applies Gated Graph Neural Network (GGNN) to fuse temporal and spatial features. The results on the PEMS datasets reveal that jointly modeling different types of relationships can improve the traffic prediction performance of the model. The proposed HTSTGC has better performance than the baseline methods in most cases. The research results can support urban traffic control, traffic pollution reduction, and sustainable urban development.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Spatio-Temporal AutoEncoder for Traffic Flow Prediction
    Liu, Mingzhe
    Zhu, Tongyu
    Ye, Junchen
    Meng, Qingxin
    Sun, Leilei
    Du, Bowen
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (05) : 5516 - 5526
  • [32] Sequential Patterns for Spatio-Temporal Traffic Prediction
    Almuhisen, Feda
    Durand, Nicolas
    Brenner, Leonardo
    Quafafou, Mohamed
    2021 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY (WI-IAT 2021), 2021, : 595 - 602
  • [33] Federated Spatio-Temporal Traffic Flow Prediction Based on Graph Convolutional Network
    Wang, Hanqiu
    Zhang, Rongqing
    Cheng, Xiang
    Yang, Liuqing
    2022 14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING, WCSP, 2022, : 221 - 225
  • [34] Traffic Prediction Based on Multi-graph Spatio-Temporal Convolutional Network
    Yao, Xiaomin
    Zhang, Zhenguo
    Cui, Rongyi
    Zhao, Yahui
    WEB INFORMATION SYSTEMS AND APPLICATIONS (WISA 2021), 2021, 12999 : 144 - 155
  • [35] SPATIO-TEMPORAL GRAPH-TCN NEURAL NETWORK FOR TRAFFIC FLOW PREDICTION
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2022,
  • [36] STFGCN: Spatio-Temporal Fusion Graph Convolutional Networks for Subway Traffic Prediction
    Zhang, Xiaoxi
    Tian, Zhanwei
    Shi, Yan
    Guan, Qingwen
    Lu, Yan
    Pan, Yujie
    IEEE ACCESS, 2024, 12 : 194449 - 194461
  • [37] Dynamic Spatio-Temporal Graph Fusion Convolutional Network for Urban Traffic Prediction
    Ma, Haodong
    Qin, Xizhong
    Jia, Yuan
    Zhou, Junwei
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [38] Spatio-Temporal Graph-TCN Neural Network for Traffic Flow Prediction
    Ren, Hongjin
    Kang, Jinbiao
    Zhang, Ke
    2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2022, 2022,
  • [39] Robust Traffic Prediction Using Probabilistic Spatio-Temporal Graph Convolutional Network
    Karim, Atkia Akila
    Nower, Naushin
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 259 - 273
  • [40] Traffic Flow Prediction Based on Spatio-Temporal Aggregated Graph Neural Networks
    Wu, Shuangshuang
    Hu, Yao
    TRANSPORTATION RESEARCH RECORD, 2025,