Sharp inequalities for Toader mean in terms of other bivariate means

被引:0
|
作者
Jiang, Wei-Dong [1 ]
机构
[1] Weihai Vocat Coll, Dept Informat Engn, Weihai 264210, Shandong, Peoples R China
来源
关键词
Toader mean; complete elliptic integrals; arithmetic mean; centroidal mean; contraharmonic mean; COMPLETE ELLIPTIC INTEGRALS; BOUNDS; APPROXIMATIONS;
D O I
10.15672/hujms.1106426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, the author discovers the best constants & alpha;1, & alpha;2, & alpha;3, & beta;1, & beta;2 and & beta;3 for the double inequalities (a - b)2n+2 n n-ary sumation -1 )2k+2 & alpha;1A < T(a, b)-4 1C-3 2,k)2 (1 (a - b (a - b)2n+2 4A-A < & beta;1A a + b 4((k + 1)!)2 a + b a + b k=1 (a - b )2n+2 n n-ary sumation -1 )2k+2 & alpha;2A < T(a, b)-3 4C-1 2, k)2 (1 (a - b (a - b)2n+2 4A-A < & beta;2A a + b 4((k + 1)!)2 a + b a + b k=1 and (a - b)2n+2 n n-ary sumation -1 )2k+2 & alpha;3A < 4 5T (a, b)+1 2, k)2 (1 (a - b (a - b )2n+2 5H-A-A < & beta;3A a + b 5((k + 1)!)2 a + b a + b k=1 to be valid for all a, b > 0 with a = b and n = 1, 2, & BULL; & BULL; & BULL;, where a2 + b2 C & EQUIV; C(a, b) = H & EQUIV; H(a, b) = 2(a2 + ab + b2) a + b a + b , C & EQUIV; C(a, b) = 3(a + b) , A & EQUIV; A(a, b) = 2 , 2ab 2 & int; & pi;/2 & RADIC; a + b, T(a, b) = a2 cos2 & theta; + b2 sin2 & theta; d & theta; & pi; 0 are respectively the contraharmonic, centroidal, arithmetic, harmonic and Toader means of two positive numbers a and b, (a, n) = a(a + 1)(a + 2)(a + 3) & BULL; & BULL; & BULL; (a + n - 1) denotes the shifted factorial function. As an application of the above inequalities, the author also find a new bounds for the complete elliptic integral of the second kind.
引用
收藏
页码:841 / 849
页数:9
相关论文
共 50 条
  • [31] Bounds for Combinations of Toader Mean and Arithmetic Mean in Terms of Centroidal Mean
    Jiang, Wei-Dong
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [32] Sharp bounds for Heinz mean by Heron mean and other means
    Zhu, Ling
    AIMS MATHEMATICS, 2020, 5 (01): : 723 - 731
  • [33] Sharp generalized Seiffert mean bounds for the Toader mean of order 4
    Li, Yanlin
    Zhao, Tiehong
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [34] OPTIMAL BOUNDS FOR TOADER MEAN IN TERMS OF QUADRATIC, CONTRA-HARMONIC AND SECOND NEUMAN MEANS
    Yang, Yue-Ying
    Qian, Wei-Mao
    Chu, Yu-Ming
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2018, 9 (04): : 28 - 38
  • [35] A DOUBLE INEQUALITY FOR THE COMBINATION OF TOADER MEAN AND THE ARITHMETIC MEAN IN TERMS OF THE CONTRAHARMONIC MEAN
    Jiang, Wei-Dong
    Qi, Feng
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 99 (113): : 237 - 242
  • [36] Sharp generalized Seiffert mean bounds for the Toader mean of order 4
    Yanlin Li
    Tiehong Zhao
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [37] Inequalities of the Wasserstein mean with other matrix means
    Kim, Sejong
    Lee, Hosoo
    ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (01) : 194 - 207
  • [38] Inequalities of the Wasserstein mean with other matrix means
    Sejong Kim
    Hosoo Lee
    Annals of Functional Analysis, 2020, 11 : 194 - 207
  • [39] A Sharp Lower Bound for Toader-Qi Mean with Applications
    Yang, Zhen-Hang
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [40] SHARP BOUNDS FOR SEIFFERT MEAN IN TERMS OF WEIGHTED POWER MEANS OF ARITHMETIC MEAN AND GEOMETRIC MEAN
    Yang, Zhen-Hang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (02): : 499 - 511