Sharp generalized Seiffert mean bounds for the Toader mean of order 4

被引:0
|
作者
Yanlin Li
Tiehong Zhao
机构
[1] Hangzhou Normal University,Department of Mathematics
关键词
Toader mean; Complete elliptic integral; Generalized Seiffert mean; 26E60; 33E05;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we present the best possible parameters α,β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ,\beta $$\end{document} such that the double inequality Sα(a,b)<T4(a,b)<Sβ(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} S_{\alpha }(a,b)<T_{4}(a,b)<S_{\beta }(a,b) \end{aligned}$$\end{document}holds for a,b>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a, b>0$$\end{document} with a≠b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\ne b$$\end{document}, and provide new bounds for the complete elliptic integral of the second kind, where Sp(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{p}(a,b)$$\end{document} and T4(a,b)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{4}(a,b)$$\end{document} are the generalized Seiffert mean and Toader mean of order 4, respectively.
引用
收藏
相关论文
共 50 条
  • [1] Sharp generalized Seiffert mean bounds for the Toader mean of order 4
    Li, Yanlin
    Zhao, Tiehong
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [2] Sharp Generalized Seiffert Mean Bounds for Toader Mean
    Chu, Yu-Ming
    Wang, Miao-Kun
    Qiu, Song-Liang
    Qiu, Ye-Fang
    ABSTRACT AND APPLIED ANALYSIS, 2011,
  • [3] Sharp power mean bounds for Seiffert mean
    LI Yong-min
    WANG Miao-kun
    CHU Yu-ming
    Applied Mathematics:A Journal of Chinese Universities, 2014, (01) : 101 - 107
  • [4] Sharp power mean bounds for Seiffert mean
    Yong-min Li
    Miao-kun Wang
    Yu-ming Chu
    Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 101 - 107
  • [5] Sharp power mean bounds for Seiffert mean
    Li Yong-min
    Wang Miao-kun
    Chu Yu-ming
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2014, 29 (01) : 101 - 107
  • [6] Sharp power mean bounds for Seiffert mean
    LI Yong-min
    WANG Miao-kun
    CHU Yu-ming
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2014, 29 (01) : 101 - 107
  • [7] Sharp Bounds for Seiffert Mean in Terms of Contraharmonic Mean
    Chu, Yu-Ming
    Hou, Shou-Wei
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [8] Bounds for Toader Mean in Terms of Arithmetic and Second Seiffert Means
    He, Zai-Yin
    Jiang, Yue-Ping
    Chug, Yu-Ming
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2019, 10 (03): : 561 - 570
  • [9] SHARP BOUNDS FOR TOADER MEAN IN TERMS OF CONTRAHARMONIC MEAN WITH APPLICATIONS
    Chu, Yu-Ming
    Wang, Miao-Kun
    Ma, Xiao-Yan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (02): : 161 - 166
  • [10] Sharp bounds for Seiffert mean in terms of root mean square
    Yu-Ming Chu
    Shou-Wei Hou
    Zhong-Hua Shen
    Journal of Inequalities and Applications, 2012