Characteristic boundary layers in the vanishing viscosity limit for the Hunter-Saxton equation

被引:0
|
作者
Peng, Lei [1 ]
Li, Jingyu [1 ]
Mei, Ming [2 ,3 ]
Zhang, Kaijun [1 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] Champlain Coll St Lambert, Dept Math, St Lambert, PQ J4P 3P2, Canada
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Hunter-Saxton equation; Characteristic boundary layers; Vanishing viscosity; WELL-POSEDNESS; PRANDTL;
D O I
10.1016/j.jde.2023.12.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hunter-Saxton equation models the propagation of weakly nonlinear orientation waves in a massive director field of the nematic liquid crystal. In this paper, we study the vanishing viscosity limit for an initial boundary value problem of the Hunter-Saxton equation with the characteristic boundary condition. By the formal multiscale analysis, we first derive the characteristic boundary layer profile, which satisfies a nonlinear parabolic equation. On the base of the Galerkin method along with a compactness argument, we then establish the global well-posedness of the boundary layer equation. Finally, we prove the global stability of the boundary layer profiles together with the optimal convergence rate of the vanishing viscosity limit by the energy method.
引用
收藏
页码:164 / 195
页数:32
相关论文
共 50 条
  • [21] Numerical conservative solutions of the Hunter-Saxton equation
    Grunert, Katrin
    Nordli, Anders
    Solem, Susanne
    BIT NUMERICAL MATHEMATICS, 2021, 61 (02) : 441 - 471
  • [22] A two-component μ-Hunter-Saxton equation
    Zuo, Dafeng
    INVERSE PROBLEMS, 2010, 26 (08)
  • [23] Integrability structures of the generalized Hunter-Saxton equation
    Morozov, Oleg I.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [24] Several Types of Similarity Solutions for the Hunter-Saxton Equation
    Mathew Baxter
    Robert A.Van Gorder
    Kuppalapalle Vajravelu
    Communications in Theoretical Physics, 2015, 63 (06) : 675 - 681
  • [25] Well-Posedness for the Dispersive Hunter-Saxton Equation
    Ai, Albert
    Avadanei, Ovithu-Neculai
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (09) : 7883 - 7924
  • [26] The Hunter-Saxton equation describes the geodesic flow on a sphere
    Lenells, Jonatan
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (10) : 2049 - 2064
  • [27] A numerical view on α-dissipative solutions of the Hunter-Saxton equation
    Christiansen, Thomas
    Grunert, Katrin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (01) : 579 - 612
  • [28] A semi-analytical solution of Hunter-Saxton equation
    Arbabi, Somayeh
    Nazari, Akbar
    Darvishi, Mohammad Taghi
    OPTIK, 2016, 127 (13): : 5255 - 5258
  • [29] On the Cauchy problem of a weakly dissipative μ-Hunter-Saxton equation
    Liu, Jingjing
    Yin, Zhaoyang
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (02): : 267 - 279
  • [30] Global existence for the periodic dispersive Hunter-Saxton equation
    Ye, Weikui
    Yin, Zhaoyang
    MONATSHEFTE FUR MATHEMATIK, 2020, 191 (02): : 267 - 278