Global existence for the periodic dispersive Hunter-Saxton equation

被引:0
|
作者
Ye, Weikui [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Taipa, Macao, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 191卷 / 02期
基金
中国国家自然科学基金;
关键词
The periodic dispersive Hunter-Saxton equation; Local well-posedness; The Kato method; Global existence; SHALLOW-WATER EQUATION; CAMASSA-HOLM; WELL-POSEDNESS; WAVE BREAKING; PARTICLE TRAJECTORIES; DISSIPATIVE SOLUTIONS; WEAK SOLUTIONS; SHORT-PULSE; OSTROVSKY; SCATTERING;
D O I
10.1007/s00605-019-01290-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study an integrable dispersive Hunter-Saxton equation in periodic domain. Firstly, we establish the local well-posedness of the Cauchy problem of the equation in Hs(S),s >= 2, by applying the Kato method. Then, based on a sign-preserve property, we obtain a global existence result for the equation. Moreover, we extend the obtained result to some periodic nonlinear partial differential equations of second order of the general form.
引用
收藏
页码:267 / 278
页数:12
相关论文
共 50 条