Global existence for the periodic dispersive Hunter-Saxton equation

被引:0
|
作者
Ye, Weikui [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Taipa, Macao, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 191卷 / 02期
基金
中国国家自然科学基金;
关键词
The periodic dispersive Hunter-Saxton equation; Local well-posedness; The Kato method; Global existence; SHALLOW-WATER EQUATION; CAMASSA-HOLM; WELL-POSEDNESS; WAVE BREAKING; PARTICLE TRAJECTORIES; DISSIPATIVE SOLUTIONS; WEAK SOLUTIONS; SHORT-PULSE; OSTROVSKY; SCATTERING;
D O I
10.1007/s00605-019-01290-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study an integrable dispersive Hunter-Saxton equation in periodic domain. Firstly, we establish the local well-posedness of the Cauchy problem of the equation in Hs(S),s >= 2, by applying the Kato method. Then, based on a sign-preserve property, we obtain a global existence result for the equation. Moreover, we extend the obtained result to some periodic nonlinear partial differential equations of second order of the general form.
引用
收藏
页码:267 / 278
页数:12
相关论文
共 50 条
  • [41] Integrability structures of the generalized Hunter-Saxton equation
    Morozov, Oleg I.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [42] GLOBAL WEAK SOLUTIONS FOR A PERIODIC TWO-COMPONENT HUNTER-SAXTON SYSTEM
    Guan, Chunxia
    Yin, Zhaoyang
    QUARTERLY OF APPLIED MATHEMATICS, 2012, 70 (02) : 285 - 297
  • [43] Global weak solutions for a periodic two-component μ-Hunter-Saxton system
    Liu, Jingjing
    Yin, Zhaoyang
    MONATSHEFTE FUR MATHEMATIK, 2012, 168 (3-4): : 503 - 521
  • [44] ON THE HUNTER-SAXTON SYSTEM
    Wunsch, Marcus
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (03): : 647 - 656
  • [45] Several Types of Similarity Solutions for the Hunter-Saxton Equation
    Mathew Baxter
    Robert A.Van Gorder
    Kuppalapalle Vajravelu
    Communications in Theoretical Physics, 2015, 63 (06) : 675 - 681
  • [46] The Hunter-Saxton equation describes the geodesic flow on a sphere
    Lenells, Jonatan
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (10) : 2049 - 2064
  • [47] A numerical view on α-dissipative solutions of the Hunter-Saxton equation
    Christiansen, Thomas
    Grunert, Katrin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2025, 59 (01) : 579 - 612
  • [48] A semi-analytical solution of Hunter-Saxton equation
    Arbabi, Somayeh
    Nazari, Akbar
    Darvishi, Mohammad Taghi
    OPTIK, 2016, 127 (13): : 5255 - 5258
  • [49] On the Cauchy problem of a weakly dissipative μ-Hunter-Saxton equation
    Liu, Jingjing
    Yin, Zhaoyang
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (02): : 267 - 279
  • [50] Global Existence and Blow-Up Phenomena for the Periodic Hunter—Saxton Equation with Weak Dissipation
    Xuemei Wei
    Zhaoyang Yin
    Journal of Nonlinear Mathematical Physics, 2011, 18 : 139 - 149