The Landau-Zener-Stuckelberg-Majorana transition in the T2 << T1 limit

被引:0
|
作者
Boucher, Michael C. [1 ]
Sun, Peter [1 ]
Keresztes, Ivan [1 ]
Harrell, Lee E. [2 ]
Marohn, John A. [1 ]
机构
[1] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[2] US Mil Acad, Dept Phys & Nucl Engn, West Point, NY 10996 USA
基金
美国国家卫生研究院;
关键词
Landau-Zener-Stuckelberg-Majorana transition; Landau-Zener transition; Bloch equations; Electron spin resonance; Saturation; Adiabatic rapid passage; Magnetic resonance force microscopy; Force-gradient detected magnetic resonance; NUCLEAR MAGNETIC-RELAXATION; ROTATING-FRAME RELAXATION; ADIABATIC PULSES; BROAD-BAND; BLOCH EQUATIONS; ELECTRON-SPIN; RESONANCE; INVERSION; DYNAMICS; CONVERGENCE;
D O I
10.1016/j.jmr.2023.107523
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Landau-Zener-Stuckelberg-Majorana (LZSM) transitions occur between quantum states when parameters in the system's Hamiltonian are varied continuously and rapidly. In magnetic resonance, losses in adiabatic rapid passage can be understood using the physics of LZSM transitions. Most treatments of LZSM transitions ignore the T-2 dephasing of coherences, however. Motivated by ongoing work in magnetic resonance force microscopy, we employ the Bloch equations, coordinate transformation, and the Magnus expansion to derive expressions for the final magnetization following a rapid field sweep at fixed irradiation intensity that include T-2 losses. Our derivation introduces an inversion-function, Fourier transform method for numerically evaluating highly oscillatory integrals. Expressions for the final magnetization are given for low and high irradiation intensity, valid in the T-2 << T-1 limit. Analytical results are compared to numerical simulations and nuclear magnetic resonance experiments. Our relatively straightforward calculation reproduces semiquantitatively the well known LZSM result in the T-2 -> 0 limit.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] On characterizations of (T1, T2)-normal spaces
    Chiangpradit, Monchaya
    Sompong, Supannee
    Boonpok, Chawalit
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1315 - 1320
  • [32] T1 AND T2 FOR ORBACH RELAXATION PROCESSES
    CULVAHOUSE, JW
    RICHARDS, PM
    PHYSICAL REVIEW, 1969, 178 (02): : 485 - +
  • [33] On almost (T1 , T2 )-normal spaces
    Chutiman, Nipaporn
    Sompong, Supannee
    Boonpok, Chawalit
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1355 - 1361
  • [34] T2ρ and T1ρ adiabatic relaxations and contrasts
    Michaeli, Shalom
    Sorce, Dennis J.
    Garwood, Michael
    CURRENT ANALYTICAL CHEMISTRY, 2008, 4 (01) : 8 - 25
  • [35] Diffusion generated T1 and T2 contrast
    Kaufmann, I.
    Seiberlich, N.
    Haase, A.
    Jakob, P.
    JOURNAL OF MAGNETIC RESONANCE, 2008, 192 (01) : 139 - 150
  • [36] RELAXATION TIMES T1 AND T2 IN ANTHRACITE
    GARIFIANOV, NS
    KOZYREV, BM
    SOVIET PHYSICS JETP-USSR, 1957, 3 (06): : 952 - 952
  • [37] On almost (T1, T2)-regular spaces
    Chutiman, Nipaporn
    Sompong, Supannee
    Boonpok, Chawalit
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04):
  • [38] EDITORIAL NOTE ON BETWEEN T1 AND T2
    不详
    AMERICAN MATHEMATICAL MONTHLY, 1967, 74 (10): : 1241 - &
  • [39] Joint myocardial T1 and T2 mapping
    Mehmet Akçakaya
    Sebastian Weingärtner
    Tamer A Basha
    Sébastien Roujol
    Reza Nezafat
    Journal of Cardiovascular Magnetic Resonance, 17 (Suppl 1)
  • [40] DIOPHANTINE UNDECIDABILITY OF C(T1,T2)
    KIM, KH
    ROUSH, FW
    JOURNAL OF ALGEBRA, 1992, 150 (01) : 35 - 44