The Landau-Zener-Stuckelberg-Majorana transition in the T2 << T1 limit

被引:0
|
作者
Boucher, Michael C. [1 ]
Sun, Peter [1 ]
Keresztes, Ivan [1 ]
Harrell, Lee E. [2 ]
Marohn, John A. [1 ]
机构
[1] Cornell Univ, Dept Chem & Chem Biol, Ithaca, NY 14853 USA
[2] US Mil Acad, Dept Phys & Nucl Engn, West Point, NY 10996 USA
基金
美国国家卫生研究院;
关键词
Landau-Zener-Stuckelberg-Majorana transition; Landau-Zener transition; Bloch equations; Electron spin resonance; Saturation; Adiabatic rapid passage; Magnetic resonance force microscopy; Force-gradient detected magnetic resonance; NUCLEAR MAGNETIC-RELAXATION; ROTATING-FRAME RELAXATION; ADIABATIC PULSES; BROAD-BAND; BLOCH EQUATIONS; ELECTRON-SPIN; RESONANCE; INVERSION; DYNAMICS; CONVERGENCE;
D O I
10.1016/j.jmr.2023.107523
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Landau-Zener-Stuckelberg-Majorana (LZSM) transitions occur between quantum states when parameters in the system's Hamiltonian are varied continuously and rapidly. In magnetic resonance, losses in adiabatic rapid passage can be understood using the physics of LZSM transitions. Most treatments of LZSM transitions ignore the T-2 dephasing of coherences, however. Motivated by ongoing work in magnetic resonance force microscopy, we employ the Bloch equations, coordinate transformation, and the Magnus expansion to derive expressions for the final magnetization following a rapid field sweep at fixed irradiation intensity that include T-2 losses. Our derivation introduces an inversion-function, Fourier transform method for numerically evaluating highly oscillatory integrals. Expressions for the final magnetization are given for low and high irradiation intensity, valid in the T-2 << T-1 limit. Analytical results are compared to numerical simulations and nuclear magnetic resonance experiments. Our relatively straightforward calculation reproduces semiquantitatively the well known LZSM result in the T-2 -> 0 limit.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Nonlinear Landau-Zener-Stuckelberg-Majorana interferometry
    Li, Sheng-Chang
    Fu, Li-Bin
    Liu, Jie
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [2] Landau-Zener-Stuckelberg-Majorana Interferometry of a Single Hole
    Bogan, Alex
    Studenikin, Sergei
    Korkusinski, Marek
    Gaudreau, Louis
    Zawadzki, Piotr
    Sachrajda, Andy S.
    Tracy, Lisa
    Reno, John
    Hargett, Terry
    PHYSICAL REVIEW LETTERS, 2018, 120 (20)
  • [3] Nonadiabatic Landau-Zener-Stuckelberg-Majorana transitions, dynamics, and interference
    Ivakhnenko, Oleh V.
    Shevchenko, Sergey N.
    Nori, Franco
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2023, 995 : 1 - 89
  • [4] Characterization of Qubit Dephasing by Landau-Zener-Stuckelberg-Majorana Interferometry
    Forster, F.
    Petersen, G.
    Manus, S.
    Haenggi, P.
    Schuh, D.
    Wegscheider, W.
    Kohler, S.
    Ludwig, S.
    PHYSICAL REVIEW LETTERS, 2014, 112 (11)
  • [5] Exactly solvable model for Landau-Zener-Stuckelberg-Majorana interferometry
    Xie, Qiongtao
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [6] Landau-Zener-Stuckelberg-Majorana lasing in circuit quantum electrodynamics
    Neilinger, P.
    Shevchenko, S. N.
    Bogar, J.
    Rehak, M.
    Oelsner, G.
    Karpov, D. S.
    Huebner, U.
    Astafiev, O.
    Grajcar, M.
    Il'ichev, E.
    PHYSICAL REVIEW B, 2016, 94 (09)
  • [7] Pseudo-Hermitian Landau-Zener-Stuckelberg-Majorana model
    Torosov, Boyan T.
    Vitanov, Nikolay V.
    PHYSICAL REVIEW A, 2017, 96 (01)
  • [8] Fast quantum gates based on Landau-Zener-Stuckelberg-Majorana transitions
    Caceres, Joan J.
    Dominguez, Daniel
    Jose Sanchez, Maria
    PHYSICAL REVIEW A, 2023, 108 (05)
  • [9] Geometric Landau-Zener-Stuckelberg-Majorana interferometry for hybrid spin registers
    Guo, Ao-Lin
    Tu, Tao
    Zhu, Le-Tian
    Li, Chuan-Feng
    Guo, Guang-Can
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [10] Nonlinear non-Hermitian Landau-Zener-Stuckelberg-Majorana interferometry
    Wang, Xin
    Liu, H. D.
    Fu, L. B.
    NEW JOURNAL OF PHYSICS, 2023, 25 (04):