Visual acuity prediction on real-life patient data using a machine learning based multistage system

被引:2
|
作者
Schlosser, Tobias [1 ]
Beuth, Frederik [1 ]
Meyer, Trixy [1 ]
Kumar, Arunodhayan Sampath [1 ]
Stolze, Gabriel [2 ]
Furashova, Olga [2 ]
Engelmann, Katrin [2 ]
Kowerko, Danny [1 ]
机构
[1] Tech Univ Chemnitz, Jr Professorship Media Comp, D-09107 Chemnitz, Germany
[2] Klinikum Chemnitz gGmbH, Dept Ophthalmol, D-09116 Chemnitz, Germany
关键词
Ophthalmology; Ophthalmology diseases; Treatment progression; OCT biomarkers; Computer vision and pattern recognition; Predictive statistics; Machine learning; Deep learning; MACULAR DEGENERATION; RANIBIZUMAB TREATMENT;
D O I
10.1038/s41598-024-54482-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In ophthalmology, intravitreal operative medication therapy (IVOM) is a widespread treatment for diseases related to the age-related macular degeneration (AMD), the diabetic macular edema, as well as the retinal vein occlusion. However, in real-world settings, patients often suffer from loss of vision on time scales of years despite therapy, whereas the prediction of the visual acuity (VA) and the earliest possible detection of deterioration under real-life conditions is challenging due to heterogeneous and incomplete data. In this contribution, we present a workflow for the development of a research-compatible data corpus fusing different IT systems of the department of ophthalmology of a German maximum care hospital. The extensive data corpus allows predictive statements of the expected progression of a patient and his or her VA in each of the three diseases. For the disease AMD, we found out a significant deterioration of the visual acuity over time. Within our proposed multistage system, we subsequently classify the VA progression into the three groups of therapy "winners", "stabilizers", and "losers" (WSL classification scheme). Our OCT biomarker classification using an ensemble of deep neural networks results in a classification accuracy (F1-score) of over 98%, enabling us to complete incomplete OCT documentations while allowing us to exploit them for a more precise VA modelling process. Our VA prediction requires at least four VA examinations and optionally OCT biomarkers from the same time period to predict the VA progression within a forecasted time frame, whereas our prediction is currently restricted to IVOM/no therapy. We achieve a final prediction accuracy of 69% in macro average F1-score, while being in the same range as the ophthalmologists with 57.8 and 50 +/- 10.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50 \pm 10.7$$\end{document}% F1-score.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Tomato ripeness and shelf-life prediction system using machine learning
    Goyal, Kashish
    Kumar, Parteek
    Verma, Karun
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2024, 18 (04) : 2561 - 2572
  • [42] Simulation-based learning influences real-life attitudes
    Paulus, Philipp C.
    Dabas, Aroma
    Felber, Annalena
    Benoit, Roland G.
    COGNITION, 2022, 227
  • [43] Tomato ripeness and shelf-life prediction system using machine learning
    Kashish Goyal
    Parteek Kumar
    Karun Verma
    Journal of Food Measurement and Characterization, 2024, 18 : 2715 - 2730
  • [44] Prediction of Wind Speed Using Real Data: An analysis of Statistical Machine Learning Techniques
    Ali, K. M. E.
    Hassan, M. Z.
    Ali, A. B. M. Shawkat
    Kumar, Jashnil
    2017 4TH ASIA-PACIFIC WORLD CONGRESS ON COMPUTER SCIENCE AND ENGINEERING (APWCONCSE 2017), 2017, : 259 - 264
  • [45] A machine learning model for the early prediction of ovarian cancer using real world data
    de la Oliva Roque, Victor Manuel
    Esteban-Medina, Alberto
    Alejos Collado, Laura
    Louceras Munecas, Carlos
    Munoyerro-Muniz, Dolores
    Villegas, Roman
    Dopazo Blazquez, Joaquin
    FEBS OPEN BIO, 2024, 14 : 14 - 14
  • [46] Machine Learning Models for Stock Prediction Using Real-Time Streaming Data
    Jena, Monalisa
    Behera, Ranjan Kumar
    Rath, Santanu Kumar
    BIOLOGICALLY INSPIRED TECHNIQUES IN MANY-CRITERIA DECISION MAKING, 2020, 10 : 101 - 108
  • [47] Microgrid Data Prediction Using Machine Learning
    Lautert, Renata Rodrigues
    Cambambi, Claudio Adriano C.
    Rangel, Camilo Alberto S.
    Canha, Luciane Neves
    de Freitas, Adriano Gomes
    Brignol, Wagner da Silva
    2023 15TH SEMINAR ON POWER ELECTRONICS AND CONTROL, SEPOC, 2023,
  • [48] Multimodal Deception Detection Using Real-Life Trial Data
    Sen, M. Umut
    Perez-Rosas, Veronica
    Yanikoglu, Berrin
    Abouelenien, Mohamed
    Burzo, Mihai
    Mihalcea, Rada
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (01) : 306 - 319
  • [49] Artificial intelligence-based prediction models for acute myeloid leukemia using real-life data: A DATAML registry study
    Didi, Ibrahim
    Alliot, Jean -Marc
    Dumas, Pierre -Yves
    Vergez, Francois
    Tavitian, Suzanne
    Largeaud, Laetitia
    Bidet, Audrey
    Rieu, Jean-Baptiste
    Luquet, Isabelle
    Lechevalier, Nicolas
    Delabesse, Eric
    Sarry, Audrey
    De Grande, Anne -Charlotte
    Berard, Emilie
    Pigneux, Arnaud
    Recher, Christian
    Simoncini, David
    Bertoli, Sarah
    LEUKEMIA RESEARCH, 2024, 136
  • [50] Machine Learning-Based Prediction of Readmission Risk in Cardiovascular and Cerebrovascular Conditions Using Patient EMR Data
    Panchangam, Prasad V. R.
    Tejas, A.
    Thejas, B. U.
    Maniaci, Michael J.
    HEALTHCARE, 2024, 12 (15)