Visual acuity prediction on real-life patient data using a machine learning based multistage system

被引:2
|
作者
Schlosser, Tobias [1 ]
Beuth, Frederik [1 ]
Meyer, Trixy [1 ]
Kumar, Arunodhayan Sampath [1 ]
Stolze, Gabriel [2 ]
Furashova, Olga [2 ]
Engelmann, Katrin [2 ]
Kowerko, Danny [1 ]
机构
[1] Tech Univ Chemnitz, Jr Professorship Media Comp, D-09107 Chemnitz, Germany
[2] Klinikum Chemnitz gGmbH, Dept Ophthalmol, D-09116 Chemnitz, Germany
关键词
Ophthalmology; Ophthalmology diseases; Treatment progression; OCT biomarkers; Computer vision and pattern recognition; Predictive statistics; Machine learning; Deep learning; MACULAR DEGENERATION; RANIBIZUMAB TREATMENT;
D O I
10.1038/s41598-024-54482-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In ophthalmology, intravitreal operative medication therapy (IVOM) is a widespread treatment for diseases related to the age-related macular degeneration (AMD), the diabetic macular edema, as well as the retinal vein occlusion. However, in real-world settings, patients often suffer from loss of vision on time scales of years despite therapy, whereas the prediction of the visual acuity (VA) and the earliest possible detection of deterioration under real-life conditions is challenging due to heterogeneous and incomplete data. In this contribution, we present a workflow for the development of a research-compatible data corpus fusing different IT systems of the department of ophthalmology of a German maximum care hospital. The extensive data corpus allows predictive statements of the expected progression of a patient and his or her VA in each of the three diseases. For the disease AMD, we found out a significant deterioration of the visual acuity over time. Within our proposed multistage system, we subsequently classify the VA progression into the three groups of therapy "winners", "stabilizers", and "losers" (WSL classification scheme). Our OCT biomarker classification using an ensemble of deep neural networks results in a classification accuracy (F1-score) of over 98%, enabling us to complete incomplete OCT documentations while allowing us to exploit them for a more precise VA modelling process. Our VA prediction requires at least four VA examinations and optionally OCT biomarkers from the same time period to predict the VA progression within a forecasted time frame, whereas our prediction is currently restricted to IVOM/no therapy. We achieve a final prediction accuracy of 69% in macro average F1-score, while being in the same range as the ophthalmologists with 57.8 and 50 +/- 10.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$50 \pm 10.7$$\end{document}% F1-score.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Decision diagrams in machine learning: An empirical study on real-life credit-risk data
    Mues, C
    Baesens, B
    Files, CM
    Vanthienen, J
    DIAGRAMMATIC REPRESENTATION AND INFERENCE, 2004, 2980 : 395 - 397
  • [22] Decision diagrams in machine learning: an empirical study on real-life credit-risk data
    Mues, C
    Baesens, B
    Files, CA
    Vanthienen, J
    EXPERT SYSTEMS WITH APPLICATIONS, 2004, 27 (02) : 257 - 264
  • [23] Machine learning based battery pack health prediction using real-world data
    Soo, Yin-Yi
    Wang, Yujie
    Xiang, Haoxiang
    Chen, Zonghai
    ENERGY, 2024, 308
  • [24] Chaotic System Prediction Using Data Assimilation and Machine Learning
    Guo Yanan
    Cao Xiaoqun
    Peng Kecheng
    2020 INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND BIOENGINEERING (ICEEB 2020), 2020, 185
  • [25] Predicting Visual Acuity for Open Globe Injuries using Machine Learning
    Johnson, Keir
    Armstrong, Grayson
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [26] Issues of Application of Machine Learning Models for Virtual and Real-Life Buildings
    Kim, Young Min
    Ahn, Ki Uhn
    Park, Cheol Soo
    SUSTAINABILITY, 2016, 8 (06)
  • [27] Deception Detection using Real-life Trial Data
    Perez-Rosas, Veronica
    Abouelenien, Mohamed
    Mihalcea, Rada
    Burzo, Mihai
    ICMI'15: PROCEEDINGS OF THE 2015 ACM INTERNATIONAL CONFERENCE ON MULTIMODAL INTERACTION, 2015, : 59 - 66
  • [28] Machine Learning Approaches for Prediction of Facial Rejuvenation Using Real and Synthetic Data
    Shah, Syed Afaq Ali
    Bennamoun, Mohammed
    Molton, Michael K.
    IEEE ACCESS, 2019, 7 : 23779 - 23787
  • [29] Prediction of the equivalent circulation density using machine learning algorithms based on real-time data
    Kandil, Abdelrahman
    Khaled, Samir
    Elfakharany, Taher
    AIMS ENERGY, 2023, 11 (03) : 425 - 453
  • [30] Aircraft Engine Remaining Useful Life Prediction using neural networks and real-life engine operational data
    Szrama, Slawomir
    Lodygowski, Tomasz
    ADVANCES IN ENGINEERING SOFTWARE, 2024, 192