Fully First-Principles Surface Spectroscopy with Machine Learning

被引:13
|
作者
Litman, Yair [3 ,4 ]
Lan, Jinggang [1 ,2 ]
Nagata, Yuki [3 ]
Wilkins, David M. [5 ]
机构
[1] NYU, Dept Chem, New York, NY 10003 USA
[2] NYU, Simons Ctr Computat Phys Chem, New York, NY 10003 USA
[3] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[4] Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge CB2 1EW, England
[5] Queens Univ Belfast, Ctr Quantum Mat & Technol, Sch Math & Phys, Belfast BT7 1NN, North Ireland
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 36期
关键词
SUM-FREQUENCY GENERATION; LIQUID WATER; AIR/WATER INTERFACE; ISOTOPIC DILUTION; QUANTUM DYNAMICS; BENDING MODE; SPECTRA; ORIENTATION;
D O I
10.1021/acs.jpclett.3c01989
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Our current understanding of the structure and dynamics of aqueous interfaces at the molecular level has grown substantially due to the continuous development of surface-specific spectroscopies, such as vibrational sum-frequency generation (VSFG). As in other vibrational spectroscopies, we must turn to atomistic simulations to extract all of the information encoded in the VSFG spectra. The high computational cost associated with existing methods means that they have limitations in representing systems with complex electronic structure or in achieving statistical convergence. In this work, we combine high-dimensional neural network interatomic potentials and symmetry-adapted Gaussian process regression to overcome these constraints. We show that it is possible to model VSFG signals with fully ab initio accuracy using machine learning and illustrate the versatility of our approach on the water/air interface. Our strategy allows us to identify the main sources of theoretical inaccuracy and establish a clear pathway toward the modeling of surface-sensitive spectroscopy of complex interfaces.
引用
收藏
页码:8175 / 8182
页数:8
相关论文
共 50 条
  • [1] First-principles NMR of oxide glasses boosted by machine learning
    Charpentier, Thibault
    FARADAY DISCUSSIONS, 2025, 255 (00) : 370 - 390
  • [2] First-principles machine learning modelling of COVID-19
    Magri, Luca
    Doan, Nguyen Anh Khoa
    arXiv, 2020,
  • [3] Machine Learning Accelerated First-Principles Study of the Hydrodeoxygenation of Propanoic Acid
    Yang, Wenqiang
    Abdelfatah, Kareem E.
    Kundu, Subrata Kumar
    Rajbanshi, Biplab
    Terejanu, Gabriel A.
    Heyden, Andreas
    ACS CATALYSIS, 2024, 14 (13): : 10148 - 10163
  • [4] Machine learning-aided first-principles calculations of redox potentials
    Jinnouchi, Ryosuke
    Karsai, Ferenc
    Kresse, Georg
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [5] First-Principles Performance Prediction of High Explosives Enabled by Machine Learning
    Lindquist, Beth A.
    Jadrich, Ryan B.
    Leiding, Jeffery A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (09): : 3945 - 3954
  • [6] Incorporating Unmodeled Dynamics Into First-Principles Models Through Machine Learning
    Quaghebeur, Ward
    Nopens, Ingmar
    De Baets, Bernard
    IEEE ACCESS, 2021, 9 : 22014 - 22022
  • [7] First-Principles Broadband Dielectric Spectroscopy
    Hamada, T.
    Ohno, T.
    JOURNAL OF THE AUSTRALIAN CERAMIC SOCIETY, 2011, 47 (02) : 61 - 64
  • [8] Fully autonomous materials screening methodology combining first-principles calculations, machine learning and high-performance computing system
    Takahashi, Akira
    Terayama, Kei
    Kumagai, Yu
    Tamura, Ryo
    Oba, Fumiyasu
    SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS-METHODS, 2023, 3 (01):
  • [9] First-principles and machine-learning approaches for interpreting and predicting the properties of MXenes
    Gouveia, Jose D.
    Galvao, Tiago L. P.
    Nassar, Kais Iben
    Gomes, Jose R. B.
    NPJ 2D MATERIALS AND APPLICATIONS, 2025, 9 (01)
  • [10] Prediction of magnetic Janus materials based on machine learning and first-principles calculations
    Qiao, Zhang
    Wei, Tan
    Ning, Yong-Qi
    Nie, Guo-Zheng
    Cai, Meng-Qiu
    Wang, Jun-Nian
    Zhu, Hui-Ping
    Zhao, Yu-Qing
    ACTA PHYSICA SINICA, 2024, 73 (23)