Fully First-Principles Surface Spectroscopy with Machine Learning

被引:13
|
作者
Litman, Yair [3 ,4 ]
Lan, Jinggang [1 ,2 ]
Nagata, Yuki [3 ]
Wilkins, David M. [5 ]
机构
[1] NYU, Dept Chem, New York, NY 10003 USA
[2] NYU, Simons Ctr Computat Phys Chem, New York, NY 10003 USA
[3] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
[4] Univ Cambridge, Yusuf Hamied Dept Chem, Cambridge CB2 1EW, England
[5] Queens Univ Belfast, Ctr Quantum Mat & Technol, Sch Math & Phys, Belfast BT7 1NN, North Ireland
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2023年 / 14卷 / 36期
关键词
SUM-FREQUENCY GENERATION; LIQUID WATER; AIR/WATER INTERFACE; ISOTOPIC DILUTION; QUANTUM DYNAMICS; BENDING MODE; SPECTRA; ORIENTATION;
D O I
10.1021/acs.jpclett.3c01989
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Our current understanding of the structure and dynamics of aqueous interfaces at the molecular level has grown substantially due to the continuous development of surface-specific spectroscopies, such as vibrational sum-frequency generation (VSFG). As in other vibrational spectroscopies, we must turn to atomistic simulations to extract all of the information encoded in the VSFG spectra. The high computational cost associated with existing methods means that they have limitations in representing systems with complex electronic structure or in achieving statistical convergence. In this work, we combine high-dimensional neural network interatomic potentials and symmetry-adapted Gaussian process regression to overcome these constraints. We show that it is possible to model VSFG signals with fully ab initio accuracy using machine learning and illustrate the versatility of our approach on the water/air interface. Our strategy allows us to identify the main sources of theoretical inaccuracy and establish a clear pathway toward the modeling of surface-sensitive spectroscopy of complex interfaces.
引用
收藏
页码:8175 / 8182
页数:8
相关论文
共 50 条
  • [11] Ocean of Data: Integrating First-Principles Calculations and CALPHAD Modeling with Machine Learning
    Liu, Zi-Kui
    JOURNAL OF PHASE EQUILIBRIA AND DIFFUSION, 2018, 39 (05) : 635 - 649
  • [12] Ocean of Data: Integrating First-Principles Calculations and CALPHAD Modeling with Machine Learning
    Zi-Kui Liu
    Journal of Phase Equilibria and Diffusion, 2018, 39 : 635 - 649
  • [13] Insight into the Electronic Properties of Semiconductor Heterostructure Based on Machine Learning and First-Principles
    Yuan, Yuanyuan
    Ren, Junqiang
    Xue, Hongtao
    Li, Junchen
    Tang, Fuling
    La, Peiqing
    Lu, Xuefeng
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (09) : 12462 - 12472
  • [14] Calculation and prediction of sliding energy barriers by first-principles combined with machine learning
    Niu, Yuan
    Wang, Yun
    He, Minjuan
    He, Wenhao
    Zhao, Zhenghua
    Lu, Zhibin
    CERAMICS INTERNATIONAL, 2023, 49 (15) : 24752 - 24761
  • [15] Machine Learning of First-Principles Force-Fields for Alkane and Polyene Hydrocarbons
    Hajibabaei, Amir
    Ha, Miran
    Pourasad, Saeed
    Kim, Junu
    Kim, Kwang S.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (42): : 9414 - 9420
  • [16] First-Principles Prediction of Surface Wetting
    Andersson, M. P.
    Hassenkam, T.
    Matthiesen, J.
    Nikolajsen, L., V
    Okhrimenko, D., V
    Dobberschuetz, S.
    Stipp, S. L. S.
    LANGMUIR, 2020, 36 (42) : 12451 - 12459
  • [17] First-principles approaches to surface segregation
    Monnier, R
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1997, 75 (01): : 67 - 144
  • [18] First-principles approach to vibrational spectroscopy of biomolecules
    Herrmann, Carmen
    Reiher, Markus
    ATOMISTIC APPROACHES IN MODERN BIOLOGY: FROM QUANTUM CHEMISTRY TO MOLECULAR SIMULATIONS, 2007, 268 : 85 - 132
  • [19] First-principles, machine learning and symbolic regression modelling for organic molecule adsorption on two-dimensional CaO surface
    Hu, Wenguang
    Zhang, Lei
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2023, 124
  • [20] Thermoelectric properties of penta-InP5: A first-principles and machine learning study
    Tien, Nguyen Thanh
    Thao, Pham Thi Bich
    Nguyen, Duy Khanh
    Thanh, Le Nhat
    Dien, Vo Khuong
    JOURNAL OF APPLIED PHYSICS, 2025, 137 (08)