First-principles and machine-learning approaches for interpreting and predicting the properties of MXenes

被引:0
|
作者
Gouveia, Jose D. [1 ]
Galvao, Tiago L. P. [2 ]
Nassar, Kais Iben [1 ]
Gomes, Jose R. B. [1 ]
机构
[1] Univ Aveiro, Campus Univ Santiago, CICECO Aveiro Inst Mat, Dept Chem, Aveiro, Portugal
[2] Univ Aveiro, Campus Univ Santiago, CICECO Aveiro Inst Mat, Dept Mat & Ceram Engn, Aveiro, Portugal
关键词
GENERALIZED-GRADIENT-APPROXIMATION; DENSITY-FUNCTIONAL APPROXIMATIONS; HYDROGEN EVOLUTION REACTION; TRANSITION-METAL CARBIDES; MAGNETIC-PROPERTIES; CATALYTIC-ACTIVITY; AMMONIA-SYNTHESIS; SURFACE-STRUCTURE; OXYGEN REDUCTION; CO2; REDUCTION;
D O I
10.1038/s41699-025-00529-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
MXenes are a versatile family of 2D inorganic materials with applications in energy storage, shielding, sensing, and catalysis. This review highlights computational studies using density functional theory and machine-learning approaches to explore their structure (stacking, functionalization, doping), properties (electronic, mechanical, magnetic), and application potential. Key advances and challenges are critically examined, offering insights into applying computational research to transition these materials from the lab to practical use.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Elucidation of Mechanical Properties of Nano-Scale Interfaces by First-Principles Machine-Learning Calculations
    Matsunaka, Daisuke
    Zairyo/Journal of the Society of Materials Science, Japan, 2024, 73 (08) : 640 - 644
  • [2] First-principles database for fitting a machine-learning silicon interatomic force field
    K. Zongo
    L. K. Béland
    C. Ouellet-Plamondon
    MRS Advances, 2022, 7 : 39 - 47
  • [3] First-principles database for fitting a machine-learning silicon interatomic force field
    Zongo, K.
    Beland, L. K.
    Ouellet-Plamondon, C.
    MRS ADVANCES, 2022, 7 (2-3) : 39 - 47
  • [4] First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials
    Mortazavi, Bohayra
    Silani, Mohammad
    Podryabinkin, Evgeny, V
    Rabczuk, Timon
    Zhuang, Xiaoying
    Shapeev, Alexander, V
    ADVANCED MATERIALS, 2021, 33 (35)
  • [5] A first-principles machine-learning force field for heterogeneous ice nucleation on microcline feldspar
    Piaggi, Pablo M.
    Selloni, Annabella
    Panagiotopoulos, Athanassios Z.
    Car, Roberto
    Debenedetti, Pablo G.
    FARADAY DISCUSSIONS, 2024, 249 (00) : 98 - 113
  • [6] First-principles exploration of superconductivity in MXenes
    Bekaert, Jonas
    Sevik, Cem
    Milosevic, Milorad, V
    NANOSCALE, 2020, 12 (33) : 17354 - 17361
  • [7] Predicting the work function of 2D MXenes using machine-learning methods
    Roy, Pranav
    Rekhi, Lavie
    Koh, See Wee
    Li, Hong
    Choksi, Tej S.
    JOURNAL OF PHYSICS-ENERGY, 2023, 5 (03):
  • [8] A study of anisotropic thermoelectric properties of bulk Germanium Sulfide in its Pnma phase: a combined first-principles and machine-learning approach
    Rakshit, Medha
    Nath, Subhadip
    Chowdhury, Suman
    Mondal, Rajkumar
    Banerjee, Dipali
    Jana, Debnarayan
    PHYSICA SCRIPTA, 2022, 97 (12)
  • [9] Accelerating first-principles estimation of thermal conductivity by machine-learning interatomic potentials: A MTP/ShengBTE solution
    Mortazavi, Bohayra
    Podryabinkin, Evgeny, V
    Novikov, Ivan S.
    Rabczuk, Timon
    Zhuang, Xiaoying
    Shapeev, Alexander, V
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 258
  • [10] First-principles machine-learning study of infrared spectra of methane under extreme pressure and temperature conditions
    Liu, Gengxin
    Huang, Jiajia
    Hou, Rui
    Pan, Ding
    CHEMICAL PHYSICS LETTERS, 2025, 869