First-principles and machine-learning approaches for interpreting and predicting the properties of MXenes

被引:0
|
作者
Gouveia, Jose D. [1 ]
Galvao, Tiago L. P. [2 ]
Nassar, Kais Iben [1 ]
Gomes, Jose R. B. [1 ]
机构
[1] Univ Aveiro, Campus Univ Santiago, CICECO Aveiro Inst Mat, Dept Chem, Aveiro, Portugal
[2] Univ Aveiro, Campus Univ Santiago, CICECO Aveiro Inst Mat, Dept Mat & Ceram Engn, Aveiro, Portugal
关键词
GENERALIZED-GRADIENT-APPROXIMATION; DENSITY-FUNCTIONAL APPROXIMATIONS; HYDROGEN EVOLUTION REACTION; TRANSITION-METAL CARBIDES; MAGNETIC-PROPERTIES; CATALYTIC-ACTIVITY; AMMONIA-SYNTHESIS; SURFACE-STRUCTURE; OXYGEN REDUCTION; CO2; REDUCTION;
D O I
10.1038/s41699-025-00529-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
MXenes are a versatile family of 2D inorganic materials with applications in energy storage, shielding, sensing, and catalysis. This review highlights computational studies using density functional theory and machine-learning approaches to explore their structure (stacking, functionalization, doping), properties (electronic, mechanical, magnetic), and application potential. Key advances and challenges are critically examined, offering insights into applying computational research to transition these materials from the lab to practical use.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Predicting the grain boundary segregation energy of solute atoms in aluminum by first-principles calculation and machine learning
    Zhang, Xuan
    Zhang, Liang
    Wan, Yuxuan
    Shibuta, Yasushi
    Huang, Xiaoxu
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [22] First-principles NMR of oxide glasses boosted by machine learning
    Charpentier, Thibault
    FARADAY DISCUSSIONS, 2025, 255 (00) : 370 - 390
  • [23] First-principles machine learning modelling of COVID-19
    Magri, Luca
    Doan, Nguyen Anh Khoa
    arXiv, 2020,
  • [24] Toward a First-Principles Framework for Predicting Collective Properties of Electrolytes
    Duignan, Timothy T.
    Kathmann, Shawn M.
    Schenter, Gregory K.
    Mundy, Christopher J.
    ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (13) : 2833 - 2843
  • [25] Predicting Elastic Properties of β-HMX from First-Principles Calculations
    Peng, Qing
    Rahul
    Wang, Guangyu
    Liu, Gui-Rong
    Grimme, Stefan
    De, Suvranu
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (18): : 5896 - 5903
  • [26] Predicting base station return on investment in the telecommunications industry: Machine-learning approaches
    Sahin, Cihan
    INTELLIGENT SYSTEMS IN ACCOUNTING FINANCE & MANAGEMENT, 2023, 30 (01): : 29 - 40
  • [27] First-Principles Study Combined with Interpretable Machine-Learning Models of Bayesian Optimization for the Design of Ultrawide Bandgap Double Perovskites
    Shen, Hongtao
    Wu, Jiang
    Chen, Zhengxin
    Fang, Xu
    Li, Jiawei
    Li, Wenhao
    Lin, Jia
    Zhu, Fei
    Wang, Xudong
    Chen, Yihang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (43): : 21410 - 21422
  • [28] Impressive Thermoelectric Figure of Merit in Two-Dimensional Tetragonal Pnictogens: a Combined First-Principles and Machine-Learning Approach
    Ghosal, Supriya
    Chowdhury, Suman
    Jana, Debnarayan
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (49) : 59092 - 59103
  • [29] Combining machine-learning models with first-principles high-throughput calculations to accelerate the search for promising thermoelectric materials
    Fan, Tao
    Oganov, Artem R.
    JOURNAL OF MATERIALS CHEMISTRY C, 2025, 13 (03) : 1439 - 1448
  • [30] Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures
    Mortazavi, Bohayra
    Podryabinkin, Evgeny, V
    Roche, Stephan
    Rabczuk, Timon
    Zhuang, Xiaoying
    Shapeev, Alexander, V
    MATERIALS HORIZONS, 2020, 7 (09) : 2359 - 2367