First-principles and machine-learning approaches for interpreting and predicting the properties of MXenes

被引:0
|
作者
Gouveia, Jose D. [1 ]
Galvao, Tiago L. P. [2 ]
Nassar, Kais Iben [1 ]
Gomes, Jose R. B. [1 ]
机构
[1] Univ Aveiro, Campus Univ Santiago, CICECO Aveiro Inst Mat, Dept Chem, Aveiro, Portugal
[2] Univ Aveiro, Campus Univ Santiago, CICECO Aveiro Inst Mat, Dept Mat & Ceram Engn, Aveiro, Portugal
关键词
GENERALIZED-GRADIENT-APPROXIMATION; DENSITY-FUNCTIONAL APPROXIMATIONS; HYDROGEN EVOLUTION REACTION; TRANSITION-METAL CARBIDES; MAGNETIC-PROPERTIES; CATALYTIC-ACTIVITY; AMMONIA-SYNTHESIS; SURFACE-STRUCTURE; OXYGEN REDUCTION; CO2; REDUCTION;
D O I
10.1038/s41699-025-00529-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
MXenes are a versatile family of 2D inorganic materials with applications in energy storage, shielding, sensing, and catalysis. This review highlights computational studies using density functional theory and machine-learning approaches to explore their structure (stacking, functionalization, doping), properties (electronic, mechanical, magnetic), and application potential. Key advances and challenges are critically examined, offering insights into applying computational research to transition these materials from the lab to practical use.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Machine Learning Accelerated First-Principles Study of the Hydrodeoxygenation of Propanoic Acid
    Yang, Wenqiang
    Abdelfatah, Kareem E.
    Kundu, Subrata Kumar
    Rajbanshi, Biplab
    Terejanu, Gabriel A.
    Heyden, Andreas
    ACS CATALYSIS, 2024, 14 (13): : 10148 - 10163
  • [42] Machine learning-aided first-principles calculations of redox potentials
    Jinnouchi, Ryosuke
    Karsai, Ferenc
    Kresse, Georg
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [43] First-Principles Performance Prediction of High Explosives Enabled by Machine Learning
    Lindquist, Beth A.
    Jadrich, Ryan B.
    Leiding, Jeffery A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (09): : 3945 - 3954
  • [44] Incorporating Unmodeled Dynamics Into First-Principles Models Through Machine Learning
    Quaghebeur, Ward
    Nopens, Ingmar
    De Baets, Bernard
    IEEE ACCESS, 2021, 9 : 22014 - 22022
  • [45] Approaches to atomistic triple-line properties from first-principles
    Hashibon, Adham
    Elsaesser, Christian
    SCRIPTA MATERIALIA, 2010, 62 (12) : 939 - 944
  • [46] Rapid and accurate identification of structural and electronic properties of Xenes under different strains via a first-principles machine-learning approach for energy-electronic devices
    Wang, Guoqing
    Liu, Rongchao
    Gebreslassie, Gebrehiwot
    Desta, Halefom G.
    Tian, Dong
    Lin, Bin
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [47] First-principles and Monte Carlo simulations of high-entropy MXenes
    Oyeniran, Noah
    Chowdhury, Oyshee
    Hu, Chongze
    APPLIED PHYSICS LETTERS, 2025, 126 (12)
  • [48] Ionic liquids intercalation in titanium carbide MXenes: A first-principles investigation
    Zhang, Shaoze
    Jiang, De-en
    Zhou, Nan
    Tang, Jiaxing
    Zhang, Keyu
    Li, Yin
    Hu, Junxian
    Peng, Changjun
    Liu, Honglai
    Yang, Bin
    Yao, Yaochun
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (27) : 2294 - 2307
  • [49] Mechanical properties of Mo-Re alloy based on first-principles and machine learning potential function
    Yang, Wu
    Ye, Jingwen
    Bi, Peng
    Huang, Baosheng
    Chen, Liang
    Yi, Yong
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [50] Accelerating Pmn21-BAlNP properties prediction by machine learning based on first-principles calculation
    Zhu, Chuanshuai
    Yang, Ruike
    Chai, Bao
    Wei, Qun
    Zhang, Dongyun
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2019, 126 : 224 - 233