Entanglement and Absorbing State Transitions in (d+1)-Dimensional Stabilizer Circuits

被引:5
|
作者
Sierant, P. [1 ]
Turkeshi, X. [2 ,3 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[2] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany
[3] PSL Res Univ, Coll France, USR 3573, JEIP,CNRS, 11 Pl Marcelin Berthelot, F-75321 Paris 05, France
基金
欧盟地平线“2020”;
关键词
entanglement; monitored quantum dynamics; feedback operations; random circuits;
D O I
10.12693/APhysPolA.144.474
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the influence of feedback operations on the dynamics of (d+1)-dimensional monitored random quantum circuit. Competition between unitary dynamics and measurements leads to an entanglement phase transition, while feedback steers the dynamics towards an absorbing state, yielding an absorbing state phase transition. Based on previous results in one spatial dimension (Phys. Rev. Lett. 130, 120402 (2023)), we discuss the interplay between the two types of transitions for d >= 2 in the presence of (i) short-range feedback operations or (ii) additional global control operations. In both cases, the absorbing state transition belongs to the d-dimensional directed percolation universality class. In contrast, the entanglement transition depends on the feedback operation type and reveals dynamics' inequivalent features. The entanglement and absorbing state phase transition remain separated for short-range feedback operations. When global control operations are applied, we find the two critical points coinciding; nevertheless, the universality class may still differ, depending on the choice of control operation.
引用
收藏
页码:474 / 485
页数:12
相关论文
共 50 条
  • [1] Measurement-induced phase transitions in (d+1)-dimensional stabilizer circuits
    Sierant, Piotr
    Schiro, Marco
    Lewenstein, Maciej
    Turkeshi, Xhek
    PHYSICAL REVIEW B, 2022, 106 (21)
  • [2] Controlling Entanglement at Absorbing State Phase Transitions in Random Circuits
    Sierant, Piotr
    Turkeshi, Xhek
    PHYSICAL REVIEW LETTERS, 2023, 130 (12)
  • [3] Entanglement Growth and Minimal Membranes in (d+1) Random Unitary Circuits
    Sierant, Piotr
    Schiro, Marco
    Lewenstein, Maciej
    Turkeshi, Xhek
    PHYSICAL REVIEW LETTERS, 2023, 131 (23)
  • [4] Holographic entanglement first law for d+1 dimensional rotating cylindrical black holes
    Nadi, Hamideh
    Mirza, Behrouz
    Sherkatghanad, Zeinab
    Mirzaiyan, Zahra
    NUCLEAR PHYSICS B, 2019, 949
  • [5] Entanglement and absorbing-state transitions in interactive quantum dynamics
    O'Dea, Nicholas
    Morningstar, Alan
    Gopalakrishnan, Sarang
    Khemani, Vedika
    PHYSICAL REVIEW B, 2024, 109 (02) : 639
  • [6] Entanglement entropy in d+1 SU(N) gauge theory
    Velytsky, Alexander
    PHYSICAL REVIEW D, 2008, 77 (08):
  • [7] (D+1)-DIMENSIONAL FORMULATION FOR D-DIMENSIONAL CONSTRAINED SYSTEMS
    MOCHIZUKI, R
    PROGRESS OF THEORETICAL PHYSICS, 1992, 88 (06): : 1233 - 1238
  • [8] D-DIMENSIONAL GRAVITY FROM (D+1) DIMENSIONS
    RIPPL, S
    ROMERO, C
    TAVAKOL, R
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (10) : 2411 - 2421
  • [9] D-DIMENSIONAL HUBBARD-MODEL AS A (D+1)-DIMENSIONAL CLASSICAL PROBLEM
    BARMA, M
    SHASTRY, BS
    PHYSICS LETTERS A, 1977, 61 (01) : 15 - 18
  • [10] STRUCTURE PHASE-TRANSITIONS OF THE (D+1)-DIMENSIONAL DOUBLE SINE-GORDON FIELD-THEORY
    ZHU, YJ
    LOU, SY
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1995, 23 (01) : 83 - 92