Entanglement and Absorbing State Transitions in (d+1)-Dimensional Stabilizer Circuits

被引:5
|
作者
Sierant, P. [1 ]
Turkeshi, X. [2 ,3 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, Castelldefels 08860, Barcelona, Spain
[2] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany
[3] PSL Res Univ, Coll France, USR 3573, JEIP,CNRS, 11 Pl Marcelin Berthelot, F-75321 Paris 05, France
基金
欧盟地平线“2020”;
关键词
entanglement; monitored quantum dynamics; feedback operations; random circuits;
D O I
10.12693/APhysPolA.144.474
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the influence of feedback operations on the dynamics of (d+1)-dimensional monitored random quantum circuit. Competition between unitary dynamics and measurements leads to an entanglement phase transition, while feedback steers the dynamics towards an absorbing state, yielding an absorbing state phase transition. Based on previous results in one spatial dimension (Phys. Rev. Lett. 130, 120402 (2023)), we discuss the interplay between the two types of transitions for d >= 2 in the presence of (i) short-range feedback operations or (ii) additional global control operations. In both cases, the absorbing state transition belongs to the d-dimensional directed percolation universality class. In contrast, the entanglement transition depends on the feedback operation type and reveals dynamics' inequivalent features. The entanglement and absorbing state phase transition remain separated for short-range feedback operations. When global control operations are applied, we find the two critical points coinciding; nevertheless, the universality class may still differ, depending on the choice of control operation.
引用
收藏
页码:474 / 485
页数:12
相关论文
共 50 条
  • [21] Sphere-plate Casimir interaction in (D+1)-dimensional spacetime
    Teo, L. P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (04) : 1 - 19
  • [22] Boundary one-point function, Casimir energy and boundary state formalism in D+1 dimensional QFT
    Bajnok, Z.
    Palla, L.
    Takacs, G.
    NUCLEAR PHYSICS B, 2007, 772 (03) : 290 - 322
  • [23] Depth-d Threshold Circuits vs. Depth-(d+1) AND-OR Trees
    Hatami, Pooya
    Hoza, William M.
    Tal, Avishay
    Tell, Roei
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 895 - 904
  • [24] A bijection between the d-dimensional simplices with distances in {1,2} and the partitions of d+1
    Haase, C
    Kurz, S
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (04) : 736 - 738
  • [25] Solitons/instantons in d-dimensional SO(d) gauged O(d+1) Skyrme models
    Brihaye, Y
    Tchrakian, DH
    NONLINEARITY, 1998, 11 (04) : 891 - 911
  • [26] Symmetry limits of (D+1)-dimensional Dirac equation with Mobius square potential
    Ikot, Akpan N.
    Yazarloo, B. H.
    Zarrinkamar, S.
    Hassanabadi, H.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (05): : 1 - 10
  • [27] Boundary charges and integral identities for solitons in (d+1)-dimensional field theories
    Gudnason, Sven Bjarke
    Gao, Zhifeng
    Yang, Yisong
    NUCLEAR PHYSICS B, 2017, 925 : 500 - 535
  • [28] Black holes with toroidal horizons in (d+1)-dimensional space-time
    Sharifian, Elham
    Mirza, Behrouz
    Mirzaiyan, Zahra
    GENERAL RELATIVITY AND GRAVITATION, 2017, 49 (12)
  • [29] Lifting a conformal field theory from d-dimensional flat space to (d+1)-dimensional AdS space
    Rühl, W
    NUCLEAR PHYSICS B, 2005, 705 (03) : 437 - 456
  • [30] Entanglement and Charge-Sharpening Transitions in U(1) Symmetric Monitored Quantum Circuits
    Agrawal, Utkarsh
    Zabalo, Aidan
    Chen, Kun
    Wilson, Justin H.
    Potter, Andrew C.
    Pixley, J. H.
    Gopalakrishnan, Sarang
    Vasseur, Romain
    PHYSICAL REVIEW X, 2022, 12 (04)