(D+1)-DIMENSIONAL FORMULATION FOR D-DIMENSIONAL CONSTRAINED SYSTEMS

被引:2
|
作者
MOCHIZUKI, R
机构
来源
PROGRESS OF THEORETICAL PHYSICS | 1992年 / 88卷 / 06期
关键词
D O I
10.1143/PTP.88.1233
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
D-dimensional constrained systems are studied with stochastic Lagrangian and Hamiltonian. It is shown that stochastic consistency conditions are second class constraints and Lagrange multiplier fields can be determined in (D+1)-dimensional canonical formulation. The Langevin equations for the constrained system are obtained as Hamilton's equations of motion where conjugate momenta play a part of noise fields.
引用
收藏
页码:1233 / 1238
页数:6
相关论文
共 50 条
  • [1] D-DIMENSIONAL GRAVITY FROM (D+1) DIMENSIONS
    RIPPL, S
    ROMERO, C
    TAVAKOL, R
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (10) : 2411 - 2421
  • [2] D-DIMENSIONAL HUBBARD-MODEL AS A (D+1)-DIMENSIONAL CLASSICAL PROBLEM
    BARMA, M
    SHASTRY, BS
    PHYSICS LETTERS A, 1977, 61 (01) : 15 - 18
  • [3] EQUIVALENCE OF (D+1)-DIMENSIONAL ISING SYSTEMS OF ARBITRARY SPIN TO A D-DIMENSIONAL SPIN-1/2 QUANTUM SYSTEM
    GREEN, MB
    SNEDDON, L
    STINCHCOMBE, RB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (07): : L189 - L192
  • [4] Solitons/instantons in d-dimensional SO(d) gauged O(d+1) Skyrme models
    Brihaye, Y
    Tchrakian, DH
    NONLINEARITY, 1998, 11 (04) : 891 - 911
  • [5] Lifting a conformal field theory from d-dimensional flat space to (d+1)-dimensional AdS space
    Rühl, W
    NUCLEAR PHYSICS B, 2005, 705 (03) : 437 - 456
  • [6] A bijection between the d-dimensional simplices with distances in {1,2} and the partitions of d+1
    Haase, C
    Kurz, S
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (04) : 736 - 738
  • [7] Scalable implementation of (d+1) mutually unbiased bases for d-dimensional quantum key distribution
    Ikuta, Takuya
    Akibue, Seiseki
    Yonezu, Yuya
    Honjo, Toshimori
    Takesue, Hiroki
    Inoue, Kyo
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [8] Computing Kantorovich-Wasserstein Distances on d-dimensional histograms using (d+1)-partite graphs
    Auricchio, Gennaro
    Gualandi, Stefano
    Veneroni, Marco
    Bassetti, Federico
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [9] d-dimensional dual hyperovals in PG(d+n, 2) for d+1≤n≤3d-7
    Taniguchi, H
    EUROPEAN JOURNAL OF COMBINATORICS, 2002, 23 (08) : 1079 - 1083
  • [10] RELATIONSHIP BETWEEN D-DIMENSIONAL QUANTAL SPIN SYSTEMS AND (D+1)-DIMENSIONAL ISING SYSTEMS - EQUIVALENCE, CRITICAL EXPONENTS AND SYSTEMATIC APPROXIMANTS OF PARTITION-FUNCTION AND SPIN CORRELATIONS
    SUZUKI, M
    PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (05): : 1454 - 1469