(D+1)-DIMENSIONAL FORMULATION FOR D-DIMENSIONAL CONSTRAINED SYSTEMS

被引:2
|
作者
MOCHIZUKI, R
机构
来源
PROGRESS OF THEORETICAL PHYSICS | 1992年 / 88卷 / 06期
关键词
D O I
10.1143/PTP.88.1233
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
D-dimensional constrained systems are studied with stochastic Lagrangian and Hamiltonian. It is shown that stochastic consistency conditions are second class constraints and Lagrange multiplier fields can be determined in (D+1)-dimensional canonical formulation. The Langevin equations for the constrained system are obtained as Hamilton's equations of motion where conjugate momenta play a part of noise fields.
引用
收藏
页码:1233 / 1238
页数:6
相关论文
共 50 条
  • [21] On d-Dimensional Dual Hyperovals
    Alberto Del Fra
    Geometriae Dedicata, 2000, 79 : 157 - 178
  • [22] THE D-DIMENSIONAL LANDSBERG GAS
    DUNNINGDAVIES, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (11): : 3005 - 3012
  • [23] On d-dimensional dual hyperovals
    Del Fra, A
    GEOMETRIAE DEDICATA, 2000, 79 (02) : 157 - 178
  • [24] PERMANENTS OF D-DIMENSIONAL MATRICES
    DOW, SJ
    GIBSON, PM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 90 : 133 - 145
  • [25] SCOZA for D-dimensional spins
    NTNU, Trondheim, Norway
    Phys A Stat Theor Phys, 1-4 (176-189):
  • [26] d-dimensional arrangement revisited
    Rotter, Daniel
    Vygen, Jens
    INFORMATION PROCESSING LETTERS, 2013, 113 (13) : 498 - 505
  • [27] Antibandwidth of d-Dimensional Meshes
    Torok, Lubomir
    Vrt'o, Imrich
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 471 - +
  • [28] Inexpensive d-dimensional matchings
    Huang, BS
    Perkovic, L
    Schmutz, E
    RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (01) : 50 - 58
  • [29] Optimal state estimation for d-dimensional quantum systems
    Bruss, D
    Macchiavello, C
    PHYSICS LETTERS A, 1999, 253 (5-6) : 249 - 251
  • [30] D-Dimensional Metrics with D−3 Symmetries
    A. Szereszewski
    J. Tafel
    M. Jakimowicz
    International Journal of Theoretical Physics, 2012, 51 : 1360 - 1369