Landslide Susceptibility Mapping Using Machine Learning Methods: A Case Study in Colorado Front Range, USA

被引:0
|
作者
Pei, Te [1 ]
Qiu, Tong [1 ]
机构
[1] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Due to the complex nature of landslides, statistically based landslide susceptibility mapping has been widely used to evaluate slope failure risk for landslide-prone areas. This study evaluates the capability of different machine learning (ML) methods for landslide susceptibility mapping (LSM) in mountainous regions in the Colorado Front Range. A well-documented and georeferenced landslide inventory for the Colorado Front Range area was used to construct the database for developing and testing ML models. Nine landslide contributing factors were collected for the present study based on the availability of geophysical data and the type of landslides that occurred in the study area. These landslide causative factors represent hillslope geometries, surface hydrology, and soil conditions. Five commonly used ML models were evaluated: logistic regression ( LR), support vector machine (SVM), decision tree (DT), random forest (RF), and gradient boosting machine (GBM). The cross-validation technique was used to evaluate the model performance. All the trained models reflected the relationship between landslides and their causative factors in the study area based on cross-validation results. It was found that the performance varied among the ML models; the RF model exhibited the worst performance due to possible overfitting, and the RF and the GBM models achieved the highest performance. The trained models were subsequently used to predict the landslide susceptibility for the entire study area and generate a landslide susceptibility map. The landslide susceptibility map can provide situational awareness of potential landslide hazards within the Colorado Front Range area and provide guidelines for future decision-making.
引用
收藏
页码:521 / 530
页数:10
相关论文
共 50 条
  • [21] Landslide Susceptibility Prediction Using Machine Learning Methods: A Case Study of Landslides in the Yinghu Lake Basin in Shaanxi
    Ma, Sheng
    Chen, Jian
    Wu, Saier
    Li, Yurou
    SUSTAINABILITY, 2023, 15 (22)
  • [22] Landslide Susceptibility Mapping Methods Coupling with Statistical Methods, Machine Learning Models and Clustering Algorithms
    Wang Q.
    Xiong J.
    Cheng W.
    Cui X.
    Pang Q.
    Liu J.
    Chen W.
    Tang H.
    Song N.
    Journal of Geo-Information Science, 2024, 26 (03) : 620 - 637
  • [23] Mapping Landslide Susceptibility Using Machine Learning Algorithms and GIS: A Case Study in Shexian County, Anhui Province, China
    Wang, Zitao
    Liu, Qimeng
    Liu, Yu
    SYMMETRY-BASEL, 2020, 12 (12): : 1 - 18
  • [24] Enhancing landslide susceptibility mapping using a positive-unlabeled machine learning approach: a case study in Chamoli, India
    Zhang, Danrong
    Jindal, Dipali
    Roy, Nimisha
    Vangla, Prashanth
    Frost, J. David
    GEOENVIRONMENTAL DISASTERS, 2024, 11 (01)
  • [25] Landslide susceptibility mapping using state-of-the-art machine learning ensembles
    Pham, Binh Thai
    Vu, Vinh Duy
    Costache, Romulus
    Phong, Tran Van
    Ngo, Trinh Quoc
    Tran, Trung-Hieu
    Nguyen, Huu Duy
    Amiri, Mahdis
    Tan, Mai Thanh
    Trinh, Phan Trong
    Le, Hiep Van
    Prakash, Indra
    GEOCARTO INTERNATIONAL, 2022, 37 (18) : 5175 - 5200
  • [26] A comparative study of regional landslide susceptibility mapping with multiple machine learning models
    Wang, Yunhao
    Wang, Luqi
    Liu, Songlin
    Liu, Pengfei
    Zhu, Zhengwei
    Zhang, Wengang
    GEOLOGICAL JOURNAL, 2024, 59 (09) : 2383 - 2400
  • [27] A comparative evaluation of landslide susceptibility mapping using machine learning-based methods in Bogor area of Indonesia
    Dian Nuraini Melati
    Raditya Panji Umbara
    Astisiasari Astisiasari
    Wisyanto Wisyanto
    Syakira Trisnafiah
    Trinugroho Trinugroho
    Firman Prawiradisastra
    Yukni Arifianti
    Taufik Iqbal Ramdhani
    Samsul Arifin
    Maria Susan Anggreainy
    Environmental Earth Sciences, 2024, 83
  • [28] A comparative evaluation of landslide susceptibility mapping using machine learning-based methods in Bogor area of Indonesia
    Melati, Dian Nuraini
    Umbara, Raditya Panji
    Astisiasari, Astisiasari
    Wisyanto, Wisyanto
    Trisnafiah, Syakira
    Trinugroho, Trinugroho
    Prawiradisastra, Firman
    Arifianti, Yukni
    Ramdhani, Taufik Iqbal
    Arifin, Samsul
    Anggreainy, Maria Susan
    ENVIRONMENTAL EARTH SCIENCES, 2024, 83 (03)
  • [29] Large-Scale Landslide Susceptibility Mapping Using an Integrated Machine Learning Model: A Case Study in the Lvliang Mountains of China
    Xing, Yin
    Yue, Jianping
    Guo, Zizheng
    Chen, Yang
    Hu, Jia
    Trave, Anna
    FRONTIERS IN EARTH SCIENCE, 2021, 9
  • [30] Landslide Susceptibility Mapping Using Integrated Methods: A Case Study in the Chittagong Hilly Areas, Bangladesh
    Rabby, Yasin Wahid
    Li, Yingkui
    GEOSCIENCES, 2020, 10 (12) : 1 - 26