Landslide Susceptibility Mapping Using Machine Learning Methods: A Case Study in Colorado Front Range, USA

被引:0
|
作者
Pei, Te [1 ]
Qiu, Tong [1 ]
机构
[1] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Due to the complex nature of landslides, statistically based landslide susceptibility mapping has been widely used to evaluate slope failure risk for landslide-prone areas. This study evaluates the capability of different machine learning (ML) methods for landslide susceptibility mapping (LSM) in mountainous regions in the Colorado Front Range. A well-documented and georeferenced landslide inventory for the Colorado Front Range area was used to construct the database for developing and testing ML models. Nine landslide contributing factors were collected for the present study based on the availability of geophysical data and the type of landslides that occurred in the study area. These landslide causative factors represent hillslope geometries, surface hydrology, and soil conditions. Five commonly used ML models were evaluated: logistic regression ( LR), support vector machine (SVM), decision tree (DT), random forest (RF), and gradient boosting machine (GBM). The cross-validation technique was used to evaluate the model performance. All the trained models reflected the relationship between landslides and their causative factors in the study area based on cross-validation results. It was found that the performance varied among the ML models; the RF model exhibited the worst performance due to possible overfitting, and the RF and the GBM models achieved the highest performance. The trained models were subsequently used to predict the landslide susceptibility for the entire study area and generate a landslide susceptibility map. The landslide susceptibility map can provide situational awareness of potential landslide hazards within the Colorado Front Range area and provide guidelines for future decision-making.
引用
收藏
页码:521 / 530
页数:10
相关论文
共 50 条
  • [1] Landslide susceptibility mapping using physics-guided machine learning: a case study of a debris flow event in Colorado Front Range
    Pei, Te
    Qiu, Tong
    ACTA GEOTECHNICA, 2024, 19 (10) : 6617 - 6641
  • [2] Landslide Susceptibility Mapping Using Machine Learning: A Danish Case Study
    Ageenko, Angelina
    Hansen, Laerke Christina
    Lyng, Kevin Lundholm
    Bodum, Lars
    Arsanjani, Jamal Jokar
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (06)
  • [3] Landslide Susceptibility Mapping Using Machine Learning: A Case Study of Oregon
    Wu, Bin
    Shi, Zhenming
    Peng, Ming
    GEOSHANGHAI 2024 INTERNATIONAL CONFERENCE, VOL 5, 2024, 1334
  • [4] Landslide susceptibility mapping using ensemble machine learning methods: a case study in Lombardy, Northern Italy
    Xu, Qiongjie
    Yordanov, Vasil
    Amici, Lorenzo
    Brovelli, Maria Antonia
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2024, 17 (01)
  • [5] Assessing and mapping landslide susceptibility using different machine learning methods
    Orhan, Osman
    Bilgilioglu, Suleyman Sefa
    Kaya, Zehra
    Ozcan, Adem Kursat
    Bilgilioglu, Hacer
    GEOCARTO INTERNATIONAL, 2022, 37 (10) : 2795 - 2820
  • [6] Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping
    Micheletti, Natan
    Foresti, Loris
    Robert, Sylvain
    Leuenberger, Michael
    Pedrazzini, Andrea
    Jaboyedoff, Michel
    Kanevski, Mikhail
    MATHEMATICAL GEOSCIENCES, 2014, 46 (01) : 33 - 57
  • [7] Machine Learning Feature Selection Methods for Landslide Susceptibility Mapping
    Natan Micheletti
    Loris Foresti
    Sylvain Robert
    Michael Leuenberger
    Andrea Pedrazzini
    Michel Jaboyedoff
    Mikhail Kanevski
    Mathematical Geosciences, 2014, 46 : 33 - 57
  • [8] Landslide Susceptibility Mapping using Machine Learning Algorithm
    Hussain, Muhammad Afaq
    Chen, Zhanlong
    Wang, Run
    Shah, Safeer Ullah
    Shoaib, Muhammad
    Ali, Nafees
    Xu, Daozhu
    Ma, Chao
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2022, 8 (02): : 209 - 224
  • [9] Landslide susceptibility mapping using hybrid machine learning classifiers: a case study of Neelum Valley, Pakistan
    Sansar Raj Meena
    Muhammad Afaq Hussain
    Hafiz Ullah
    Ibad Ullah
    Bulletin of Engineering Geology and the Environment, 2025, 84 (5)
  • [10] Landslide susceptibility mapping using XGBoost machine learning method
    Badola, Shubham
    Mishra, Varun Narayan
    Parkash, Surya
    2023 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE FOR GEOANALYTICS AND REMOTE SENSING, MIGARS, 2023, : 148 - 151