DeePhys: A machine learning-assisted platform for electrophysiological phenotyping of human neuronal networks

被引:1
|
作者
Hornauer, Philipp [1 ]
Prack, Gustavo [1 ]
Anastasi, Nadia [2 ]
Ronchi, Silvia [1 ]
Kim, Taehoon [1 ]
Donner, Christian [3 ]
Fiscella, Michele [1 ,4 ]
Borgwardt, Karsten [1 ,5 ]
Jagasia, Ravi [2 ]
Taylor, Verdon [6 ]
Roqueiro, Damian [1 ,2 ]
Hierlemann, Andreas [1 ]
Schroter, Manuel [1 ]
机构
[1] Dept Biosyst Sci & Engn, ETH Zurich, CH-4058 Basel, Switzerland
[2] Roche Innovat Ctr Basel, Roche Pharm Res & Early Dev, Neurosci & Rare Dis, CH-4070 Basel, Switzerland
[3] Swiss Data Sci Ctr, ETH Zurich, CH-8092 Zurich, Switzerland
[4] MaxWell Biosyst AG, CH-8047 Zurich, Switzerland
[5] Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland
[6] Univ Basel, Dept Biomed, CH-4058 Basel, Switzerland
来源
STEM CELL REPORTS | 2024年 / 19卷 / 02期
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
ALPHA-SYNUCLEIN; FRAMEWORK; MUTATION;
D O I
10.1016/j.stemcr.2023.12.008
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Reproducible functional assays to study in vitro neuronal networks represent an important cornerstone in the quest to develop physiologically relevant cellular models of human diseases. Here, we introduce DeePhys, a MATLAB-based analysis tool for data -driven functional phenotyping of in vitro neuronal cultures recorded by high -density microelectrode arrays. DeePhys is a modular workflow that offers a range of techniques to extract features from spike -sorted data, allowing for the examination of functional phenotypes both at the individual cell and network levels, as well as across development. In addition, DeePhys incorporates the capability to integrate novel features and to use machine -learning -assisted approaches, which facilitates a comprehensive evaluation of pharmacological interventions. To illustrate its practical application, we apply DeePhys to human induced pluripotent stem cell-derived dopaminergic neurons obtained from both patients and healthy individuals and showcase how DeePhys enables phenotypic screenings.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 50 条
  • [31] Machine Learning-Assisted PAPR Reduction in Massive MIMO
    Kalinov, Aleksei
    Bychkov, Roman
    Ivanov, Andrey
    Osinsky, Alexander
    Yarotsky, Dmitry
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (03) : 537 - 541
  • [32] Machine learning-assisted investigations toward polymer synthesis
    Zhang, Zexi
    Cai, Zhanxiang
    Zhang, Wenbin
    Lu, Hua
    Chen, Mao
    CHINESE SCIENCE BULLETIN-CHINESE, 2025, 70 (4-5): : 471 - 480
  • [33] Machine Learning-Assisted Decision Making in Orthopaedic Oncology
    Rizk, Paul A.
    Gonzalez, Marcos R.
    Galoaa, Bishoy M.
    Girgis, Andrew G.
    Van Der Linden, Lotte
    Chang, Connie Y.
    Lozano-Calderon, Santiago A.
    JBJS REVIEWS, 2024, 12 (07)
  • [34] Machine learning-assisted global optimization of photonic devices
    Kudyshev, Zhaxylyk A.
    Kildishev, Alexander, V
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    NANOPHOTONICS, 2021, 10 (01) : 371 - 383
  • [35] Machine learning-assisted synthetic biology of cyanobacteria and microalgae
    Jin, Weijia
    Wang, Fangzhong
    Chen, Lei
    Zhang, Weiwen
    ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2025, 86
  • [36] Machine Learning-Assisted Prediction and Generation of Antimicrobial Peptides
    Bhangu, Sukhvir Kaur
    Welch, Nicholas
    Lewis, Morgan
    Li, Fanyi
    Gardner, Brint
    Thissen, Helmut
    Kowalczyk, Wioleta
    SMALL SCIENCE, 2025,
  • [37] Novel Cocrystals of Vonoprazan: Machine Learning-Assisted Discovery
    Lee, Min-Jeong
    Kim, Ji-Yoon
    Kim, Paul
    Lee, In-Seo
    Mswahili, Medard E.
    Jeong, Young-Seob
    Choi, Guang J.
    PHARMACEUTICS, 2022, 14 (02)
  • [38] Machine Learning-Assisted Design of Advanced Polymeric Materials
    Gao, Liang
    Lin, Jiaping
    Wang, Liquan
    Du, Lei
    ACCOUNTS OF MATERIALS RESEARCH, 2024, 5 (05): : 571 - 584
  • [39] Machine Learning-Assisted System for Thyroid Nodule Diagnosis
    Zhang, Bin
    Tian, Jie
    Pei, Shufang
    Chen, Yubing
    He, Xin
    Dong, Yuhao
    Zhang, Lu
    Mo, Xiaokai
    Huang, Wenhui
    Cong, Shuzhen
    Zhang, Shuixing
    THYROID, 2019, 29 (06) : 858 - 867
  • [40] Opportunities and Challenges for Machine Learning-Assisted Enzyme Engineering
    Yang, Jason
    Li, Francesca-Zhoufan
    Arnold, Frances H.
    ACS CENTRAL SCIENCE, 2024, 10 (02) : 226 - 241