DeePhys: A machine learning-assisted platform for electrophysiological phenotyping of human neuronal networks

被引:1
|
作者
Hornauer, Philipp [1 ]
Prack, Gustavo [1 ]
Anastasi, Nadia [2 ]
Ronchi, Silvia [1 ]
Kim, Taehoon [1 ]
Donner, Christian [3 ]
Fiscella, Michele [1 ,4 ]
Borgwardt, Karsten [1 ,5 ]
Jagasia, Ravi [2 ]
Taylor, Verdon [6 ]
Roqueiro, Damian [1 ,2 ]
Hierlemann, Andreas [1 ]
Schroter, Manuel [1 ]
机构
[1] Dept Biosyst Sci & Engn, ETH Zurich, CH-4058 Basel, Switzerland
[2] Roche Innovat Ctr Basel, Roche Pharm Res & Early Dev, Neurosci & Rare Dis, CH-4070 Basel, Switzerland
[3] Swiss Data Sci Ctr, ETH Zurich, CH-8092 Zurich, Switzerland
[4] MaxWell Biosyst AG, CH-8047 Zurich, Switzerland
[5] Swiss Inst Bioinformat, CH-1015 Lausanne, Switzerland
[6] Univ Basel, Dept Biomed, CH-4058 Basel, Switzerland
来源
STEM CELL REPORTS | 2024年 / 19卷 / 02期
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
ALPHA-SYNUCLEIN; FRAMEWORK; MUTATION;
D O I
10.1016/j.stemcr.2023.12.008
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Reproducible functional assays to study in vitro neuronal networks represent an important cornerstone in the quest to develop physiologically relevant cellular models of human diseases. Here, we introduce DeePhys, a MATLAB-based analysis tool for data -driven functional phenotyping of in vitro neuronal cultures recorded by high -density microelectrode arrays. DeePhys is a modular workflow that offers a range of techniques to extract features from spike -sorted data, allowing for the examination of functional phenotypes both at the individual cell and network levels, as well as across development. In addition, DeePhys incorporates the capability to integrate novel features and to use machine -learning -assisted approaches, which facilitates a comprehensive evaluation of pharmacological interventions. To illustrate its practical application, we apply DeePhys to human induced pluripotent stem cell-derived dopaminergic neurons obtained from both patients and healthy individuals and showcase how DeePhys enables phenotypic screenings.
引用
收藏
页码:285 / 298
页数:14
相关论文
共 50 条
  • [21] Machine Learning-Assisted Design of Material Properties
    Kadulkar, Sanket
    Sherman, Zachary M.
    Ganesan, Venkat
    Truskett, Thomas M.
    ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, 2022, 13 : 235 - 254
  • [22] Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform
    Sturm, Alexander
    Jozwiak, Grzegorz
    Verge, Marta Pla
    Munch, Laura
    Cathomen, Gino
    Vocat, Anthony
    Luraschi-Eggemann, Amanda
    Orlando, Clara
    Fromm, Katja
    Delarze, Eric
    Swiatkowski, Michal
    Wielgoszewski, Grzegorz
    Totu, Roxana M.
    Garcia-Castillo, Maria
    Delfino, Alexandre
    Tagini, Florian
    Kasas, Sandor
    Lass-Florl, Cornelia
    Gstir, Ronald
    Canton, Rafael
    Greub, Gilbert
    Cichocka, Danuta
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [23] Blood Biomarkers Panels for Screening of Colorectal Cancer and Adenoma on a Machine Learning-Assisted Detection Platform
    Wang, Hui
    Zhou, Zhiwei
    Li, Haijun
    Xiang, Weiguang
    Lan, Yilin
    Dou, Xiaowen
    Zhang, Xiuming
    CANCER CONTROL, 2023, 30
  • [24] Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform
    Alexander Sturm
    Grzegorz Jóźwiak
    Marta Pla Verge
    Laura Munch
    Gino Cathomen
    Anthony Vocat
    Amanda Luraschi-Eggemann
    Clara Orlando
    Katja Fromm
    Eric Delarze
    Michał Świątkowski
    Grzegorz Wielgoszewski
    Roxana M. Totu
    María García-Castillo
    Alexandre Delfino
    Florian Tagini
    Sandor Kasas
    Cornelia Lass-Flörl
    Ronald Gstir
    Rafael Cantón
    Gilbert Greub
    Danuta Cichocka
    Nature Communications, 15
  • [25] Machine Learning-assisted Planning and Provisioning for SDN/NFV-enabled Metropolitan Networks
    Troia, Sebastian
    Eugui Martinez, David
    Martine, Ignacio
    Moreira Zorello, Ligia Maria
    Maier, Guido
    Alberto Hernandez, Jose
    Gonzalez de Dios, Oscar
    Garrich, Miguel
    Romero-Gazquez, Jose Luis
    Moreno-Muro, Francisco-Javier
    Pavon Marino, Pablo
    Casellas, Ramon
    2019 EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS (EUCNC), 2019, : 438 - 442
  • [26] Machine learning-assisted multi-scale modeling
    Weinan, E.
    Lei, Huan
    Xie, Pinchen
    Zhang, Linfeng
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [27] Machine Learning-Assisted Simulations and Predictions for Battery Interfaces
    Sun, Zhaojun
    Li, Xin
    Wu, Yiming
    Gu, Qilin
    Zheng, Shiyou
    ADVANCED INTELLIGENT SYSTEMS, 2025,
  • [28] Interpretable machine learning-assisted screening of perovskite oxides
    Zhao, Jie
    Wang, Xiaoyan
    Li, Haobo
    Xu, Xiaoyong
    RSC ADVANCES, 2024, 14 (06) : 3909 - 3922
  • [29] Machine learning-assisted discovery of flow reactor designs
    Tom Savage
    Nausheen Basha
    Jonathan McDonough
    James Krassowski
    Omar Matar
    Ehecatl Antonio del Rio Chanona
    Nature Chemical Engineering, 2024, 1 (8): : 522 - 531
  • [30] Machine Learning-Assisted Modeling in Antenna Array Design
    Wu, Qi
    Chen, Weiqi
    Li, Yuefeng
    Wang, Haiming
    Yin, Jiexi
    Yin, Weishuang
    2024 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY, IWAT, 2024, : 92 - 93